1
|
Peng C, Cheng Y, Ma M, Chen Q, Duan Y, Liu S, Cheng H, Yang H, Huang J, Bu W, Shi C, Wu X, Chen J, Zheng R, Liu Z, Ji Z, Wang J, Huang X, Wang P, Sha W, Ge B, Wang L. Mycobacterium tuberculosis suppresses host antimicrobial peptides by dehydrogenating L-alanine. Nat Commun 2024; 15:4216. [PMID: 38760394 PMCID: PMC11101664 DOI: 10.1038/s41467-024-48588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene β-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Qiu Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Bu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Kalsum S, Otrocka M, Andersson B, Welin A, Schön T, Jenmalm-Jensen A, Lundbäck T, Lerm M. A high content screening assay for discovery of antimycobacterial compounds based on primary human macrophages infected with virulent Mycobacterium tuberculosis. Tuberculosis (Edinb) 2022; 135:102222. [PMID: 35738191 DOI: 10.1016/j.tube.2022.102222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Drug resistance in Mycobacterium tuberculosis is an emerging threat that makes the discovery of new candidate drugs a priority. In particular, drugs with high sterilizing activity within host cells are needed to improve efficacy and reduce treatment duration. We aimed to develope and validate a High Content Screening assay based on Mycobacterium tuberculosis-infected primary human monocyte-derived macrophages as its natural reservoir. Infected primary human monocyte-derived macrophages were exposed to control antibiotics or tested compounds on 384 well plates. Intracellular bacterial growth and macrophage numbers were evaluated using an ImageXpress High Content Screening system and Z'-factor was calculated to assess the reproducibility. The combination of isoniazid and rifampicin as a positive control rendered a Z'-factor above 0.4, demonstrating suitability of the assay for screening and compound profiling purposes. In a validation experiment, isoniazid, rifampicin, moxifloxacin and levofloxacin all effectively inhibited intracellular growth as expected. Finally, a pilot screening campaign including 5700 compounds from diverse libraries resulted in the identification of three compounds with confirmed antimycobacterial activity in the low micromolar range and low host cell toxicity. The assay represents an attractive screening platform for both academic research on host-pathogen mechanisms in tuberculosis and for the identification and characterization of novel antimycobacterial compounds.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Blanka Andersson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Departments of Infectious Diseases, Kalmar County Hospital, Kalmar Sweden and Linköping University Hospital, Linköping, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden.
| |
Collapse
|
6
|
Cools F, Torfs E, Aizawa J, Vanhoutte B, Maes L, Caljon G, Delputte P, Cappoen D, Cos P. Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Front Microbiol 2019; 10:311. [PMID: 30846978 PMCID: PMC6394149 DOI: 10.3389/fmicb.2019.00311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial pneumonia. Infection is linked to high morbidity and mortality rates and antibiotic resistance within this pathogen is on the rise. Therefore, there is a need for novel antimicrobial therapies. To lower the time and costs of the drug discovery process, alternative in vivo models should be considered. As such, Galleria mellonella larvae can be of great value. The larval immunity consisting of several types of haemocytes is remarkably similar to the human innate immune system. Furthermore, these larvae don’t require specific housing, are cheap and are easy to handle. In this study, the use of a G. mellonella infection model to study early pneumococcal infections and treatment is proposed. Firstly, the fitness of this model to study pneumococcal virulence factors is confirmed using streptococcal strains TIGR4, ATCC®49619, D39 and its capsule-deficient counterpart R6 at different inoculum sizes. The streptococcal polysaccharide capsule is considered the most important virulence factor without which streptococci are unable to sustain an in vivo infection. Kaplan–Meier survival curves showed indeed a higher larval survival after infection with streptococcal strain R6 compared to strain D39. Then, the infection was characterized by determining the number of haemocytes, production of oxygen free radicals and bacterial burden at several time points during the course of infection. Lastly, treatment of infected larvae with the standard antibiotics amoxicillin and moxifloxacin was evaluated. Treatment has proven to have a positive outcome on the course of infection, depending on the administered dosage. These data imply that G. mellonella larvae can be used to evaluate antimicrobial therapies against S. pneumoniae, apart from using the larval model to study streptococcal properties. The in-depth knowledge acquired regarding this model, makes it more suitable for use in future research.
Collapse
Affiliation(s)
- Freya Cools
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eveline Torfs
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juliana Aizawa
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bieke Vanhoutte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|