1
|
Buxboim A, Kronenberg-Tenga R, Salajkova S, Avidan N, Shahak H, Thurston A, Medalia O. Scaffold, mechanics and functions of nuclear lamins. FEBS Lett 2023; 597:2791-2805. [PMID: 37813648 DOI: 10.1002/1873-3468.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Nuclear lamins are type-V intermediate filaments that are involved in many nuclear processes. In mammals, A- and B-type lamins assemble into separate physical meshwork underneath the inner nuclear membrane, the nuclear lamina, with some residual fraction localized within the nucleoplasm. Lamins are the major part of the nucleoskeleton, providing mechanical strength and flexibility to protect the genome and allow nuclear deformability, while also contributing to gene regulation via interactions with chromatin. While lamins are the evolutionary ancestors of all intermediate filament family proteins, their ultimate filamentous assembly is markedly different from their cytoplasmic counterparts. Interestingly, hundreds of genetic mutations in the lamina proteins have been causally linked with a broad range of human pathologies, termed laminopathies. These include muscular, neurological and metabolic disorders, as well as premature aging diseases. Recent technological advances have contributed to resolving the filamentous structure of lamins and the corresponding lamina organization. In this review, we revisit the multiscale lamin organization and discuss its implications on nuclear mechanics and chromatin organization within lamina-associated domains.
Collapse
Affiliation(s)
- Amnon Buxboim
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Sarka Salajkova
- Department of Biochemistry, University of Zurich, Switzerland
| | - Nili Avidan
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Hen Shahak
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Alice Thurston
- Department of Biochemistry, University of Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
2
|
Wohlfarth JC, Feldmüller M, Schneller A, Kilcher S, Burkolter M, Meile S, Pilhofer M, Schuppler M, Loessner MJ. L-form conversion in Gram-positive bacteria enables escape from phage infection. Nat Microbiol 2023; 8:387-399. [PMID: 36717719 PMCID: PMC9981463 DOI: 10.1038/s41564-022-01317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
At the end of a lytic bacteriophage replication cycle in Gram-positive bacteria, peptidoglycan-degrading endolysins that cause explosive cell lysis of the host can also attack non-infected bystander cells. Here we show that in osmotically stabilized environments, Listeria monocytogenes can evade phage predation by transient conversion to a cell wall-deficient L-form state. This L-form escape is triggered by endolysins disintegrating the cell wall from without, leading to turgor-driven extrusion of wall-deficient, yet viable L-form cells. Remarkably, in the absence of phage predation, we show that L-forms can quickly revert to the walled state. These findings suggest that L-form conversion represents a population-level persistence mechanism to evade complete eradication by phage attack. Importantly, we also demonstrate phage-mediated L-form switching of the urinary tract pathogen Enterococcus faecalis in human urine, which underscores that this escape route may be widespread and has important implications for phage- and endolysin-based therapeutic interventions.
Collapse
Affiliation(s)
- Jan C Wohlfarth
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Miki Feldmüller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alissa Schneller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Kilcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marco Burkolter
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Susanne Meile
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Markus Schuppler
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Wang C, Wojtynek M, Medalia O. Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Adv Biol Regul 2023; 87:100923. [PMID: 36280452 DOI: 10.1016/j.jbior.2022.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Revealing bacterial cell biology using cryo-electron tomography. Curr Opin Struct Biol 2022; 75:102419. [PMID: 35820259 DOI: 10.1016/j.sbi.2022.102419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Visualizing macromolecules inside bacteria at a high spatial resolution has remained a challenge owing to their small size and limited resolution of optical microscopy techniques. Recent advances in cryo-electron tomography (cryo-ET) imaging methods have revealed the spatial and temporal assemblies of many macromolecules involved in different cellular processes in bacteria at a resolution of a few nanometers in their native milieu. Specifically, the application of cryo-focused ion beam (cryo-FIB) milling to thin bacterial specimens makes them amenable for high-resolution cryo-ET data collection. In this review, we highlight recent research in three emerging areas of bacterial cell biology that have benefited from the cryo-FIB-ET technology - cytoskeletal filament assembly, intracellular organelles, and multicellularity.
Collapse
|
6
|
Böhning J, Bharat TAM, Collins SM. Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens. Structure 2022; 30:408-417.e4. [PMID: 35051366 PMCID: PMC8919266 DOI: 10.1016/j.str.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Cryoelectron tomography (cryo-ET) and subtomogram averaging (STA) allow direct visualization and structural studies of biological macromolecules in their native cellular environment, in situ. Often, low signal-to-noise ratios in tomograms, low particle abundance within the cell, and low throughput in typical cryo-ET workflows severely limit the obtainable structural information. To help mitigate these limitations, here we apply a compressed sensing approach using 3D second-order total variation (CS-TV2) to tomographic reconstruction. We show that CS-TV2 increases the signal-to-noise ratio in tomograms, enhancing direct visualization of macromolecules, while preserving high-resolution information up to the secondary structure level. We show that, particularly with small datasets, CS-TV2 allows improvement of the resolution of STA maps. We further demonstrate that the CS-TV2 algorithm is applicable to cellular specimens, leading to increased visibility of molecular detail within tomograms. This work highlights the potential of compressed sensing-based reconstruction algorithms for cryo-ET and in situ structural biology. Compressed sensing (CS-TV2) for cryo-ET using 3D second-order total variation CS-TV2 increases signal contrast while retaining high-resolution information Improved subtomogram averaging from CS-TV2 reconstructions of small datasets Increased contrast and detail in CS-TV2 reconstructions of cellular specimens
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Sean M Collins
- School of Chemical and Process Engineering & School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.
Collapse
|
8
|
Horvitz D, Milrot E, Luria N, Makdasi E, Beth-Din A, Glinert I, Dombrovsky A, Laskar O. Nanodissection of Selected Viral Particles by Scanning Transmission Electron Microscopy/Focused Ion Beam for Genetic Identification. Anal Chem 2021; 93:13126-13133. [PMID: 34551252 DOI: 10.1021/acs.analchem.1c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents the development of a new correlative workflow to bridge the gap between electron microscopy imaging and genetic analysis of viruses. The workflow enables the assignment of genetic information to a specific biological entity by harnessing the nanodissection capability of focused ion beam (FIB). This correlative workflow is based on scanning transmission electron microscopy (STEM) and FIB followed by a polymerase chain reaction (PCR). For this purpose, we studied the tomato brown rugose fruit virus (ToBRFV) and the adenovirus that have significant impacts on plant integrity and human health, respectively. STEM imaging was used for the identification and localization of virus particles on a transmission electron microscopy (TEM) grid followed by FIB milling of the desired region of interest. The final-milled product was subjected to genetic analysis by the PCR. The results prove that the FIB-milling process maintains the integrity of the genetic material as confirmed by the PCR. We demonstrate the identification of RNA and DNA viruses extracted from a few micrometers of an FIB-milled TEM grid. This workflow enables the genetic analysis of specifically imaged viral particles directly from heterogeneous clinical samples. In addition to viral diagnostics, the ability to isolate and to genetically identify specific submicrometer structures may prove valuable in additional fields, including subcellular organelle and granule research.
Collapse
Affiliation(s)
- Dror Horvitz
- Electron Microscopy, Thermo Fisher Israel Ltd., HaYarden 1 street, Airport City 7019900, Israel
| | - Elad Milrot
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Neta Luria
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Efi Makdasi
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Orly Laskar
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| |
Collapse
|
9
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J Struct Biol 2021; 213:107701. [PMID: 33549695 DOI: 10.1016/j.jsb.2021.107701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS), or injectisome, to secrete toxins into host cells. These protruding systems are primary targets for drug and vaccine development. Upon contact between injectisomes and host membranes, toxin secretion is triggered. How this works structurally and functionally is yet unknown. Using cryo-focused ion beam milling and cryo-electron tomography, we visualized injectisomes of Yersinia enterocolitica inside the phagosomes of infected human myeloid cells in a close-to-native state. We observed that a minimum needle length is required for injectisomes to contact the host membrane and bending of host membranes by some injectisomes that contact the host. Through subtomogram averaging, the structure of the entire injectisome was determined, which revealed structural differences in the cytosolic sorting platform compared to other bacteria. These findings contribute to understanding how injectisomes secrete toxins into host cells and provides the indispensable native context. The application of these cryo-electron microscopy techniques paves the way for the study of the 3D structure of infection-relevant protein complexes in host-pathogen interactions.
Collapse
|
11
|
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont "Candidatus Pinguicoccus supinus" sp. nov. Sci Rep 2020; 10:20311. [PMID: 33219271 PMCID: PMC7679464 DOI: 10.1038/s41598-020-76348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Venkatamahesh Nitla
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Michele Castelli
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Claudio Bandi
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
| | | | - Franco Verni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| |
Collapse
|
12
|
Tenga R, Medalia O. Structure and unique mechanical aspects of nuclear lamin filaments. Curr Opin Struct Biol 2020; 64:152-159. [DOI: 10.1016/j.sbi.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/15/2022]
|
13
|
Söderholm N, Singh B, Uhlin BE, Sandblad L. Exploring the bacterial nano-universe. Curr Opin Struct Biol 2020; 64:166-173. [PMID: 32846309 DOI: 10.1016/j.sbi.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Since the days of the first acknowledged microscopist, Antonie van Leeuwenhoek, the 'animalcules', that is, bacteria and other microbes have been subject to increasingly detailed visualization. With the currently most sophisticated molecular imaging method; cryo electron tomography (Cryo-ET), we are reaching the milestone of being able to image an entire organism in a single dataset at nanometer resolution. Cryo-ET will enable the next revolution in our understanding of bacterial cells, their ultra-structure and intricate molecular nanomachines. Here, we highlight recent research discoveries based on constantly progressing technology developments. We discuss advantages and challenges of using Cryo-ET to visualize spatial structure of microorganisms and macromolecular complexes in their native environment.
Collapse
Affiliation(s)
- Niklas Söderholm
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Birendra Singh
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Linda Sandblad
- Department of Chemistry and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
14
|
Hayles MF, DE Winter DAM. An introduction to cryo-FIB-SEM cross-sectioning of frozen, hydrated Life Science samples. J Microsc 2020; 281:138-156. [PMID: 32737879 PMCID: PMC7891420 DOI: 10.1111/jmi.12951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
The introduction of cryo‐techniques to the focused ion‐beam scanning electron microscope (FIB‐SEM) has brought new opportunities to study frozen, hydrated samples from the field of Life Sciences. Cryo‐techniques have long been employed in electron microscopy. Thin electron transparent sections are produced by cryo‐ultramicrotomy for observation in a cryo‐transmission electron microscope (TEM). Cryo‐TEM is presently reaching the imaging of macromolecular structures. In parallel, cryo‐fractured surfaces from bulk materials have been investigated by cryo‐SEM. Both cryo‐TEM and cryo‐SEM have provided a wealth of information, despite being 2D techniques. Cryo‐TEM tomography does provide 3D information, but the thickness of the volume has a maximum of 200–300 nm, which limits the 3D information within the context of specific structures. FIB‐milling enables imaging additional planes by creating cross‐sections (e.g. cross‐sectioning or site‐specific X‐sectioning) perpendicular to the cryo‐fracture surface, thus adding a third imaging dimension to the cryo‐SEM. This paper discusses how to produce suitable cryo‐FIB‐SEM cross‐section results from frozen, hydrated Life Science samples with emphasis on ‘common knowledge’ and reoccurring observations. Lay Description Life Sciences studies life down to the smallest details. Visualising the smallest details requires electron microscopy, which utilises high‐vacuum chambers. One method to maintain the integrity of Life Sciences samples under vacuum conditions is freezing. Frozen samples can remain in a suspended state. As a result, research can be carried out without having to change the chemistry or internal physical structure of the samples. Two types of electron microscopes equipped with cryo‐sample handling facilities are used to investigate samples: The scanning electron microscope (SEM) which investigates surfaces and the transmission electron microscope (TEM) which investigates thin electron transparent sections (called lamellae). A third method of investigation combines a SEM with a focused ion beam (FIB) to form a cryo‐FIB‐SEM, which is the basis of this paper. The electron beam images the cryo‐sample surface while the ion beam mills into the surface to expose the interior of the sample. The latter is called cross‐sectioning and the result provides a way of investigating the 3rd dimension of the sample. This paper looks at the making of cross‐sections in this manner originating from knowledge and experience gained with this technique over many years. This information is meant for newcomers, and experienced researchers in cryo‐microscopy alike.
Collapse
Affiliation(s)
- M F Hayles
- Cryo-FIB-SEM Technologist, Eindhoven, the Netherlands
| | - D A M DE Winter
- Environmental Hydrogeology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Weiss GL, Stanisich JJ, Sauer MM, Lin CW, Eras J, Zyla DS, Trück J, Devuyst O, Aebi M, Pilhofer M, Glockshuber R. Architecture and function of human uromodulin filaments in urinary tract
infections. Science 2020; 369:1005-1010. [DOI: 10.1126/science.aaz9866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022]
Abstract
Uromodulin is the most abundant protein in human urine, and it forms
filaments that antagonize the adhesion of uropathogens; however, the filament
structure and mechanism of protection remain poorly understood. We used
cryo–electron tomography to show that the uromodulin filament consists of a
zigzag-shaped backbone with laterally protruding arms. N-glycosylation mapping and
biophysical assays revealed that uromodulin acts as a multivalent ligand for the
bacterial type 1 pilus adhesin, presenting specific epitopes on the regularly
spaced arms. Imaging of uromodulin-uropathogen interactions in vitro and in
patient urine showed that uromodulin filaments associate with uropathogens and
mediate bacterial aggregation, which likely prevents adhesion and allows clearance
by micturition. These results provide a framework for understanding uromodulin in
urinary tract infections and in its more enigmatic roles in physiology and
disease.
Collapse
Affiliation(s)
- Gregor L. Weiss
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Jessica J. Stanisich
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Maximilian M. Sauer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Chia-Wei Lin
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Jonathan Eras
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Dawid S. Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Johannes Trück
- University Children’s Hospital Zürich, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Division of Nephrology, UCLouvain Medical School, Brussels, Belgium
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med Microbiol Immunol 2020; 209:265-275. [PMID: 32072248 PMCID: PMC7223518 DOI: 10.1007/s00430-020-00663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.
Collapse
|
17
|
Rivas NA, Babayigit A, Conings B, Schwarz T, Sturm A, Garzón Manjón A, Cojocaru-Mirédin O, Gault B, Renner FU. Cryo-focused ion beam preparation of perovskite based solar cells for atom probe tomography. PLoS One 2020; 15:e0227920. [PMID: 31945119 PMCID: PMC6964857 DOI: 10.1371/journal.pone.0227920] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022] Open
Abstract
Focused-ion beam lift-out and annular milling is the most common method used for obtaining site specific specimens for atom probe tomography (APT) experiments and transmission electron microscopy. However, one of the main limitations of this technique comes from the structural damage as well as chemical degradation caused by the beam of high-energy ions. These aspects are especially critical in highly-sensitive specimens. In this regard, ion beam milling under cryogenic conditions has been an established technique for damage mitigation. Here, we implement a cryo-focused ion beam approach to prepare specimens for APT measurements from a quadruple cation perovskite-based solar cell device with 19.7% efficiency. As opposed to room temperature FIB milling we found that cryo-milling considerably improved APT results in terms of yield and composition measurement, i.e. halide loss, both related to less defects within the APT specimen. Based on our approach we discuss the prospects of reliable atom probe measurements of perovskite based solar cell materials. An insight into the field evaporation behavior of the organic-inorganic molecules that compose the perovskite material is also given with the aim of expanding the applicability of APT experiments towards nano-characterization of complex organo-metal materials.
Collapse
Affiliation(s)
- Nicolás Alfonso Rivas
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Limburg, Belgium
- IMEC vzw. Division IMOMEC, Diepenbeek, Limburg, Belgium
- Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany
- * E-mail:
| | - Aslihan Babayigit
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Limburg, Belgium
- IMEC vzw. Division IMOMEC, Diepenbeek, Limburg, Belgium
| | - Bert Conings
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Limburg, Belgium
- IMEC vzw. Division IMOMEC, Diepenbeek, Limburg, Belgium
| | - Torsten Schwarz
- Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany
| | - Andreas Sturm
- Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany
| | - Alba Garzón Manjón
- Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany
| | | | - Baptiste Gault
- Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany
- Department of Materials, Royal School of Mines, Imperial College, London, United Kingdom
| | - Frank Uwe Renner
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Limburg, Belgium
| |
Collapse
|
18
|
Fuest M, Schaffer M, Nocera GM, Galilea-Kleinsteuber RI, Messling JE, Heymann M, Plitzko JM, Burg TP. In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and Cryo Electron Tomography. Sci Rep 2019; 9:19133. [PMID: 31836773 PMCID: PMC6911106 DOI: 10.1038/s41598-019-55413-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
We present a microfluidic platform for studying structure-function relationships at the cellular level by connecting video rate live cell imaging with in situ microfluidic cryofixation and cryo-electron tomography of near natively preserved, unstained specimens. Correlative light and electron microscopy (CLEM) has been limited by the time required to transfer live cells from the light microscope to dedicated cryofixation instruments, such as a plunge freezer or high-pressure freezer. We recently demonstrated a microfluidic based approach that enables sample cryofixation directly in the light microscope with millisecond time resolution, a speed improvement of up to three orders of magnitude. Here we show that this cryofixation method can be combined with cryo-electron tomography (cryo-ET) by using Focused Ion Beam milling at cryogenic temperatures (cryo-FIB) to prepare frozen hydrated electron transparent sections. To make cryo-FIB sectioning of rapidly frozen microfluidic channels achievable, we developed a sacrificial layer technique to fabricate microfluidic devices with a PDMS bottom wall <5 µm thick. We demonstrate the complete workflow by rapidly cryo-freezing Caenorhabditis elegans roundworms L1 larvae during live imaging in the light microscope, followed by cryo-FIB milling and lift out to produce thin, electron transparent sections for cryo-ET imaging. Cryo-ET analysis of initial results show that the structural preservation of the cryofixed C. elegans was suitable for high resolution cryo-ET work. The combination of cryofixation during live imaging enabled by microfluidic cryofixation with the molecular resolution capabilities of cryo-ET offers an exciting avenue to further advance space-time correlative light and electron microscopy (st-CLEM) for investigation of biological processes at high resolution in four dimensions.
Collapse
Affiliation(s)
- Marie Fuest
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Miroslava Schaffer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Giovanni Marco Nocera
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | | | - Jan-Erik Messling
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany. .,Technische Universität Darmstadt, Merckstrasse 25, 64283, Darmstadt, Germany.
| |
Collapse
|
19
|
Rapisarda C, Cherrak Y, Kooger R, Schmidt V, Pellarin R, Logger L, Cascales E, Pilhofer M, Durand E, Fronzes R. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 2019; 38:e100886. [PMID: 30877094 PMCID: PMC6517824 DOI: 10.15252/embj.2018100886] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/19/2022] Open
Abstract
Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.
Collapse
Affiliation(s)
- Chiara Rapisarda
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Romain Kooger
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756, Paris, France
| | - Laureen Logger
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, INSERM, Marseille, France
| | - Rémi Fronzes
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| |
Collapse
|
20
|
Oikonomou CM, Jensen GJ. Electron Cryotomography of Bacterial Secretion Systems. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0019-2018. [PMID: 30953431 PMCID: PMC6452891 DOI: 10.1128/microbiolspec.psib-0019-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
In biology, function arises from form. For bacterial secretion systems, which often span two membranes, avidly bind to the cell wall, and contain hundreds of individual proteins, studying form is a daunting task, made possible by electron cryotomography (ECT). ECT is the highest-resolution imaging technique currently available to visualize unique objects inside cells, providing a three-dimensional view of the shapes and locations of large macromolecular complexes in their native environment. Over the past 15 years, ECT has contributed to the study of bacterial secretion systems in two main ways: by revealing intact forms for the first time and by mapping components into these forms. Here we highlight some of these contributions, revealing structural convergence in type II secretion systems, structural divergence in type III secretion systems, unexpected structures in type IV secretion systems, and unexpected mechanisms in types V and VI secretion systems. Together, they offer a glimpse into a world of fantastic forms-nanoscale rotors, needles, pumps, and dart guns-much of which remains to be explored.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Grant J Jensen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Howard Hughes Medical Institute, Pasadena, CA 91125
| |
Collapse
|
21
|
Weber MS, Wojtynek M, Medalia O. Cellular and Structural Studies of Eukaryotic Cells by Cryo-Electron Tomography. Cells 2019; 8:E57. [PMID: 30654455 PMCID: PMC6356268 DOI: 10.3390/cells8010057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/23/2022] Open
Abstract
The architecture of protein assemblies and their remodeling during physiological processes is fundamental to cells. Therefore, providing high-resolution snapshots of macromolecular complexes in their native environment is of major importance for understanding the molecular biology of the cell. Cellular structural biology by means of cryo-electron tomography (cryo-ET) offers unique insights into cellular processes at an unprecedented resolution. Recent technological advances have enabled the detection of single impinging electrons and improved the contrast of electron microscopic imaging, thereby significantly increasing the sensitivity and resolution. Moreover, various sample preparation approaches have paved the way to observe every part of a eukaryotic cell, and even multicellular specimens, under the electron beam. Imaging of macromolecular machineries at high resolution directly within their native environment is thereby becoming reality. In this review, we discuss several sample preparation and labeling techniques that allow the visualization and identification of macromolecular assemblies in situ, and demonstrate how these methods have been used to study eukaryotic cellular landscapes.
Collapse
Affiliation(s)
- Miriam Sarah Weber
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ohad Medalia
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84120, Israel.
| |
Collapse
|
22
|
|
23
|
Kooger R, Szwedziak P, Böck D, Pilhofer M. CryoEM of bacterial secretion systems. Curr Opin Struct Biol 2018; 52:64-70. [PMID: 30223223 DOI: 10.1016/j.sbi.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/18/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
The need for bacteria to interact with their environment has driven the evolution of elaborate secretion systems. By virtue of their function, secretion systems are macromolecular complexes associated with the cell envelope and therefore inherently difficult to study by conventional structural biology techniques. Cryo-electron microscopy (cryoEM) has become an invaluable technique to study large membrane-embedded complexes and led to major advances in the mechanistic understanding of secretion systems. CryoEM comprises of two main modalities, namely single particle analysis and tomography. Here, we review how detailed structures retrieved by single particle analysis combine elegantly with tomography experiments in which the secretion systems are observed in their native cellular context.
Collapse
Affiliation(s)
- Romain Kooger
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Piotr Szwedziak
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Désirée Böck
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.
| |
Collapse
|
24
|
Erdmann PS, Plitzko JM, Baumeister W. Addressing cellular compartmentalization by in situ cryo-electron tomography. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|