1
|
Llorenç-Vicedo A, Lluesma Gomez M, Zeising O, Kleiner T, Freitag J, Martinez-Hernandez F, Wilhelms F, Martinez-Garcia M. New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves. mSphere 2024; 9:e0007324. [PMID: 38666797 PMCID: PMC11237435 DOI: 10.1128/msphere.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
The signs of climate change are undeniable, and the impact of these changes on ecosystem function heavily depends on the response of microbes that underpin the food web. Antarctic ice shelf is a massive mass of floating ice that extends from the continent into the ocean, exerting a profound influence on global carbon cycles. Beneath Antarctic ice shelves, marine ice stores valuable genetic information, where marine microbial communities before the industrial revolution are archived. Here, in this proof-of-concept, by employing a combination of single-cell technologiesand metagenomics, we have been able to sequence frozen microbial DNA (≈300 years old) stored in the marine ice core B15 collected from the Filchnner-Ronne Ice Shelf. Metagenomic data indicated that Proteobacteria and Thaumarchaeota (e.g., Nitrosopumilus spp.), followed by Actinobacteria (e.g., Actinomarinales), were abundant. Remarkably, our data allow us to "travel to the past" and calibrate genomic and genetic evolutionary changes for ecologically relevant microbes and functions, such as Nitrosopumilus spp., preserved in the marine ice (≈300 years old) with those collected recently in seawater under an ice shelf (year 2017). The evolutionary divergence for the ammonia monooxygenase gene amoA involved in chemolithoautotrophy was about 0.88 amino acid and 2.8 nucleotide substitution rate per 100 sites in a century, while the accumulated rate of genomic SNPs was 2,467 per 1 Mb of genome and 100 years. Whether these evolutionary changes remained constant over the last 300 years or accelerated during post-industrial periods remains an open question that will be further elucidated. IMPORTANCE Several efforts have been undertaken to predict the response of microbes under climate change, mainly based on short-term microcosm experiments under forced conditions. A common concern is that manipulative experiments cannot properly simulate the response of microbes to climate change, which is a long-term evolutionary process. In this proof-of-concept study with a limited sample size, we demonstrate a novel approach yet to be fully explored in science for accessing genetic information from putative past marine microbes preserved under Antarctic ice shelves before the industrial revolution. This potentially allows us estimating evolutionary changes as exemplified in our study. We advocate for gathering a more comprehensive Antarctic marine ice core data sets across various periods and sites. Such a data set would enable the establishment of a robust baseline, facilitating a better assessment of the potential effects of climate change on key genetic signatures of microbes.
Collapse
Affiliation(s)
- Aitana Llorenç-Vicedo
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| | - Monica Lluesma Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| | - Ole Zeising
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Thomas Kleiner
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Johannes Freitag
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Francisco Martinez-Hernandez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
| | - Frank Wilhelms
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
2
|
Shoemaker WR. Eco-evolutionary dynamics: The repeatability of diversification in an experimental microbial community. Curr Biol 2024; 34:R140-R143. [PMID: 38412822 DOI: 10.1016/j.cub.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Understanding the evolution and subsequent maintenance of ecological diversity is a daunting task. Using a historical microbial evolution experiment, a new paper demonstrates the extent to which diversity can re-emerge in reduced communities and the traits through which rediversification occurs.
Collapse
Affiliation(s)
- William R Shoemaker
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy.
| |
Collapse
|
3
|
Shoemaker WR, Grilli J. Investigating macroecological patterns in coarse-grained microbial communities using the stochastic logistic model of growth. eLife 2024; 12:RP89650. [PMID: 38251984 PMCID: PMC10945690 DOI: 10.7554/elife.89650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The structure and diversity of microbial communities are intrinsically hierarchical due to the shared evolutionary history of their constituents. This history is typically captured through taxonomic assignment and phylogenetic reconstruction, sources of information that are frequently used to group microbes into higher levels of organization in experimental and natural communities. Connecting community diversity to the joint ecological dynamics of the abundances of these groups is a central problem of community ecology. However, how microbial diversity depends on the scale of observation at which groups are defined has never been systematically examined. Here, we used a macroecological approach to quantitatively characterize the structure and diversity of microbial communities among disparate environments across taxonomic and phylogenetic scales. We found that measures of biodiversity at a given scale can be consistently predicted using a minimal model of ecology, the Stochastic Logistic Model of growth (SLM). This result suggests that the SLM is a more appropriate null-model for microbial biodiversity than alternatives such as the Unified Neutral Theory of Biodiversity. Extending these within-scale results, we examined the relationship between measures of biodiversity calculated at different scales (e.g. genus vs. family), an empirical pattern previously evaluated in the context of the Diversity Begets Diversity (DBD) hypothesis (Madi et al., 2020). We found that the relationship between richness estimates at different scales can be quantitatively predicted assuming independence among community members, demonstrating that the DBD can be sufficiently explained using the SLM as a null model of ecology. Contrastingly, only by including correlations between the abundances of community members (e.g. as the consequence of interactions) can we predict the relationship between estimates of diversity at different scales. The results of this study characterize novel microbial patterns across scales of organization and establish a sharp demarcation between recently proposed macroecological patterns that are not and are affected by ecological interactions.
Collapse
Affiliation(s)
- William R Shoemaker
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
| | - Jacopo Grilli
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
| |
Collapse
|
4
|
Shoemaker WR. A macroecological perspective on genetic diversity in the human gut microbiome. PLoS One 2023; 18:e0288926. [PMID: 37478102 PMCID: PMC10361512 DOI: 10.1371/journal.pone.0288926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
While the human gut microbiome has been intensely studied, we have yet to obtain a sufficient understanding of the genetic diversity that it harbors. Research efforts have demonstrated that a considerable fraction of within-host genetic variation in the human gut is driven by the ecological dynamics of co-occurring strains belonging to the same species, suggesting that an ecological lens may provide insight into empirical patterns of genetic diversity. Indeed, an ecological model of self-limiting growth and environmental noise known as the Stochastic Logistic Model (SLM) was recently shown to successfully predict the temporal dynamics of strains within a single human host. However, its ability to predict patterns of genetic diversity across human hosts has yet to be tested. In this manuscript I determine whether the predictions of the SLM explain patterns of genetic diversity across unrelated human hosts for 22 common microbial species. Specifically, the stationary distribution of the SLM explains the distribution of allele frequencies across hosts and predicts the fraction of hosts harboring a given allele (i.e., prevalence) for a considerable fraction of sites. The accuracy of the SLM was correlated with independent estimates of strain structure, suggesting that patterns of genetic diversity in the gut microbiome follow statistically similar forms across human hosts due to the existence of strain-level ecology.
Collapse
Affiliation(s)
- William R. Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Brennan GL, Logares R. Tracking contemporary microbial evolution in a changing ocean. Trends Microbiol 2023; 31:336-345. [PMID: 36244921 DOI: 10.1016/j.tim.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 10/16/2022]
Abstract
Ocean microbes are fundamental for the functioning of the Earth system. Yet, our understanding of how they are reacting to global change in terms of evolution is limited. Microbes typically grow in large populations and reproduce quickly, which may allow them to rapidly adapt to environmental stressors compared to larger organisms. However, genetic evidence of contemporary evolution in wild microbes is scarce. We must begin coordinated efforts to establish new microbial time-series and explore novel tools, experiments, and data to fill this knowledge gap. The development of coordinated microbial 'genomic' observatories will provide the unprecedented opportunity to track contemporary microbial evolution in the ocean and explore the role of evolution in enabling wild microbes to respond to global change.
Collapse
Affiliation(s)
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Barkan CO, Wang S. Multiple phase transitions shape biodiversity of a migrating population. Phys Rev E 2023; 107:034405. [PMID: 37072956 DOI: 10.1103/physreve.107.034405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
Abstract
In a wide variety of natural systems, closely related microbial strains coexist stably, resulting in high levels of fine-scale biodiversity. However, the mechanisms that stabilize this coexistence are not fully understood. Spatial heterogeneity is one common stabilizing mechanism, but the rate at which organisms disperse throughout the heterogeneous environment may strongly impact the stabilizing effect that heterogeneity can provide. An intriguing example is the gut microbiome, where active mechanisms affect the movement of microbes and potentially maintain diversity. We investigate how biodiversity is affected by migration rate using a simple evolutionary model with heterogeneous selection pressure. We find that the biodiversity-migration rate relationship is shaped by multiple phase transitions, including a reentrant phase transition to coexistence. At each transition, an ecotype goes extinct and dynamics exhibit critical slowing down (CSD). CSD is encoded in the statistics of fluctuations due to demographic noise-this may provide an experimental means for detecting and altering impending extinction.
Collapse
Affiliation(s)
- Casey O Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Shoemaker WR, Lennon JT. Predicting Parallelism and Quantifying Divergence in Microbial Evolution Experiments. mSphere 2022; 7:e0067221. [PMID: 35138123 PMCID: PMC8826959 DOI: 10.1128/msphere.00672-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
The degree to which independent populations subjected to identical environmental conditions evolve in similar ways is a fundamental question in evolution. To address this question, microbial populations are often experimentally passaged in a given environment and sequenced to examine the tendency for similar mutations to repeatedly arise. However, there remains the need to develop an appropriate statistical framework to identify genes that acquired more mutations in one environment than in another (i.e., divergent evolution), genes that serve as genetic candidates of adaptation. Here, we develop a mathematical model to evaluate evolutionary outcomes among replicate populations in the same environment (i.e., parallel evolution), which can then be used to identify genes that contribute to divergent evolution. Applying this approach to data sets from evolve-and-resequence experiments, we found that the distribution of mutation counts among genes can be predicted as an ensemble of independent Poisson random variables with zero free parameters. Building on this result, we propose that the degree of divergent evolution at a given gene between populations from two different environments can be modeled as the difference between two Poisson random variables, known as the Skellam distribution. We then propose and apply a statistical test to identify specific genes that contribute to divergent evolution. By focusing on predicting patterns among replicate populations in a given environment, we are able to identify an appropriate test for divergence between environments that is grounded in first principles. IMPORTANCE There is currently no universally accepted framework for identifying genes that contribute to molecular divergence between microbial populations in different environments. To address this absence, we developed a null model to describe the distribution of mutation counts among genes. We find that divergent evolution within a given gene can be modeled as the absolute difference in the total number of mutations observed between two environments. This quantity is effectively captured by a probability distribution known as the Skellam distribution, providing an appropriate statistical test for researchers seeking to identify the set of genes that contribute to divergent evolution in microbial evolution experiments.
Collapse
Affiliation(s)
| | - Jay T. Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Shoemaker WR, Chen D, Garud NR. Comparative Population Genetics in the Human Gut Microbiome. Genome Biol Evol 2022; 14:evab116. [PMID: 34028530 PMCID: PMC8743038 DOI: 10.1093/gbe/evab116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation in the human gut microbiome is responsible for conferring a number of crucial phenotypes like the ability to digest food and metabolize drugs. Yet, our understanding of how this variation arises and is maintained remains relatively poor. Thus, the microbiome remains a largely untapped resource, as the large number of coexisting species in the microbiome presents a unique opportunity to compare and contrast evolutionary processes across species to identify universal trends and deviations. Here we outline features of the human gut microbiome that, while not unique in isolation, as an assemblage make it a system with unparalleled potential for comparative population genomics studies. We consciously take a broad view of comparative population genetics, emphasizing how sampling a large number of species allows researchers to identify universal evolutionary dynamics in addition to new genes, which can then be leveraged to identify exceptional species that deviate from general patterns. To highlight the potential power of comparative population genetics in the microbiome, we reanalyze patterns of purifying selection across ∼40 prevalent species in the human gut microbiome to identify intriguing trends which highlight functional categories in the microbiome that may be under more or less constraint.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Daisy Chen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Department of Human Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
de Heuvel J, Wilting J, Becker M, Priesemann V, Zierenberg J. Characterizing spreading dynamics of subsampled systems with nonstationary external input. Phys Rev E 2021; 102:040301. [PMID: 33212575 DOI: 10.1103/physreve.102.040301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/21/2020] [Indexed: 11/07/2022]
Abstract
Many systems with propagation dynamics, such as spike propagation in neural networks and spreading of infectious diseases, can be approximated by autoregressive models. The estimation of model parameters can be complicated by the experimental limitation that one observes only a fraction of the system (subsampling) and potentially time-dependent parameters, leading to incorrect estimates. We show analytically how to overcome the subsampling bias when estimating the propagation rate for systems with certain nonstationary external input. This approach is readily applicable to trial-based experimental setups and seasonal fluctuations as demonstrated on spike recordings from monkey prefrontal cortex and spreading of norovirus and measles.
Collapse
Affiliation(s)
- Jorge de Heuvel
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jens Wilting
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Moritz Becker
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.,Department of Computational Neuroscience, Third Institute of Physics-Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Johannes Zierenberg
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Molecular Evolutionary Dynamics of Energy Limited Microorganisms. Mol Biol Evol 2021; 38:4532-4545. [PMID: 34255090 PMCID: PMC8476154 DOI: 10.1093/molbev/msab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that while the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USACurrent affiliation
| | | | - Kenzie B Givens
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USACurrent affiliation
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
11
|
Garaeva AY, Sidorova AE, Levashova NT, Tverdislov VA. A Percolation Lattice of Natural Selection as a Switch of Deterministic and Random Processes in the Mutation Flow. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Sidorova A, Levashova N, Garaeva A, Tverdislov V. A percolation model of natural selection. Biosystems 2020; 193-194:104120. [PMID: 32092352 DOI: 10.1016/j.biosystems.2020.104120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
A new approach has been proposed and developed: the selection of optimal variants in the evolutionary mutation flow is considered as an analogue of a percolation filter. Interaction of mutations in a series of generations and random processes of drift determine the collective behavior of nodes (individuals - carriers and converters of mutations) and bonds (mutations) in the space of percolation lattice. It is shown that the choice of the development trajectory at the population level depends on the spectrum of supporting and prohibiting mutations under the influence of conjugate deterministic and random factors. From the point of view of the fluctuation-bifurcation process, new concepts of the lower and upper thresholds of the percolation selection grid are defined in the hierarchical structure of speciation. The upper threshold determines the state of self-organized criticality, which, when overcome, leads to irreversible self-organization processes in the population caused by the accumulation of mutations.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| |
Collapse
|
13
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|