1
|
Whiting‐Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14265. [PMID: 38616727 PMCID: PMC11780211 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F. Whiting‐Fawcett
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - A. S. Blomberg
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - T. Troitsky
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - M. B. Meierhofer
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - K. A. Field
- Department of BiologyBucknell UniversityLewisburgPennsylvaniaUSA
| | - S. J. Puechmaille
- Institut des Sciences de l’Évolution Montpellier (ISEM)University of Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - T. M. Lilley
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Twort VG, Laine VN, Field KA, Whiting-Fawcett F, Ito F, Reiman M, Bartonicka T, Fritze M, Ilyukha VA, Belkin VV, Khizhkin EA, Reeder DM, Fukui D, Jiang TL, Lilley TM. Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen. BMC Genomics 2024; 25:828. [PMID: 39227786 PMCID: PMC11370307 DOI: 10.1186/s12864-024-10722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.
Collapse
Affiliation(s)
- V G Twort
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - V N Laine
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - F Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - F Ito
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - M Reiman
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - T Bartonicka
- Dept. Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - M Fritze
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- German Bat Observatory, Berlin, Germany
- Competence Center for Bat Conservation Saxony Anhalt, in the South Harz Karst Landscape Biosphere Reserve, Südharz, Germany
| | - V A Ilyukha
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - V V Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E A Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - D Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Fuji Iyashinomori Woodland Study Center, The University of Tokyo, Yamanakako, Japan
| | - T L Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - T M Lilley
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Kwait R, Pinsky ML, Gignoux‐Wolfsohn S, Eskew EA, Kerwin K, Maslo B. Impact of putatively beneficial genomic loci on gene expression in little brown bats ( Myotis lucifugus, Le Conte, 1831) affected by white-nose syndrome. Evol Appl 2024; 17:e13748. [PMID: 39310794 PMCID: PMC11413065 DOI: 10.1111/eva.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024] Open
Abstract
Genome-wide scans for selection have become a popular tool for investigating evolutionary responses in wildlife to emerging diseases. However, genome scans are susceptible to false positives and do little to demonstrate specific mechanisms by which loci impact survival. Linking putatively resistant genotypes to observable phenotypes increases confidence in genome scan results and provides evidence of survival mechanisms that can guide conservation and management efforts. Here we used an expression quantitative trait loci (eQTL) analysis to uncover relationships between gene expression and alleles associated with the survival of little brown bats (Myotis lucifugus) despite infection with the causative agent of white-nose syndrome. We found that 25 of the 63 single-nucleotide polymorphisms (SNPs) associated with survival were related to gene expression in wing tissue. The differentially expressed genes have functional annotations associated with the innate immune system, metabolism, circadian rhythms, and the cellular response to stress. In addition, we observed differential expression of multiple genes with survival implications related to loci in linkage disequilibrium with focal SNPs. Together, these findings support the selective function of these loci and suggest that part of the mechanism driving survival may be the alteration of immune and other responses in epithelial tissue.
Collapse
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Evan A. Eskew
- Institute for Interdisciplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| | - Kathleen Kerwin
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
4
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Drummond RA, Obar JJ. Editorial overview: Niche-specific and species-specific host-fungal interactions - how do they impact human health? Curr Opin Microbiol 2021; 64:162-165. [PMID: 34696987 DOI: 10.1016/j.mib.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom.
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|