1
|
Zheng J, Liu X, Xiong Y, Meng Q, Li P, Zhang F, Liu X, Lin Z, Deng Q, Wen Z, Yu Z. AMXT-1501 targets membrane phospholipids against Gram-positive and -negative multidrug-resistant bacteria. Emerg Microbes Infect 2024; 13:2321981. [PMID: 38422452 PMCID: PMC10906134 DOI: 10.1080/22221751.2024.2321981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 μM (2.24-8.93 μg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qingyin Meng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Fan Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
- Department of Tuberculosis, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People’s Republic of China
| | - Xiaoming Liu
- Department of Gastroenterology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Wyżga B, Skóra M, Olechowska K, Broniatowski M, Wydro P, Hąc-Wydro K. Searching for the role of membrane lipids in the mechanism of antibacterial effect of hinokitiol. Arch Biochem Biophys 2024; 761:110178. [PMID: 39393661 DOI: 10.1016/j.abb.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The aim of this work was to investigate the effect of monoterpenoid hinokitiol (β-thujaplicin) on the monolayers and bilayers composed of lipids typical for bacteria membranes and gain insight into the potential role of the lipids in antibacterial activity and selectivity of this compound. To explore this issue, the in vitro studies were performed on different bacterial strains to verify antibacterial potency of hinokitiol. Then, the experiments on E. coli and S. aureus bacteria membrane models (i.e. multicomponent lipid monolayers and bilayers) were done. Finally, the effect of hinokitiol on one component lipid monolayers was investigated. The lipids used in the experiments included Phosphatidylethanolamines (PEs), Phosphatidylglycerols (PGs) and Cardiolipins differing in the structure of the polar head and/or the hydrophobic chains. This choice allowed the analysis of correlations between the lipid structure and the effect of hinokitiol. In vitro tests confirmed the antimicrobial activity of hinokitiol against most of the strains tested. In addition, the in vitro tests showed that E. coli bacteria were more sensitive to hinokitiol than S. aureus bacteria. Interestingly, the studies on model systems evidenced that hinokitiol molecules are of stronger effect on E.coli film and they are able to insert into these systems even at membrane-related surface pressures. Moreover, the structure of the lipid and its content in the model system correlated with the effect exerted by hinokitiol on the monolayer properties. It was found that hinokitiol differs in the affinity to particular lipids and additionally hinokitiol/lipid interactions may occur according to different mechanisms. Namely, depending on the lipid structure, hinokitiol may incorporate into the lipid film (Cardiolipins and PEs) or interact preferentially with the lipid polar head (PGs) and form hydrogen bonds. The effect of hinokitiol on the lipids was determined by the charge and size of the polar head as well as by the spatial size of the lipid molecule. Moreover, comparing the lipids of the same polar heads, hinokitiol caused stronger expansion of the film formed from the lipid having unsaturated chains. The results obtained may explain the difference in the effect of hinokitiol on particular bacterial strains. In conclusions, it can be suggested that the lipids should be considered as the bacteria membrane structural elements of a possible role in the mechanism of action of hinokitiol.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Magdalena Skóra
- Jagiellonian University Medical College, Chair of Microbiology, Department of Infections Control and Mycology, Czysta 18, 31-121, Kraków, Poland
| | - Karolina Olechowska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Marcin Broniatowski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Paweł Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Blake MJ, Page EF, Smith ME, Calhoun TR. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem Biol 2024; 5:981-988. [PMID: 39363965 PMCID: PMC11446237 DOI: 10.1039/d4cb00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 10/05/2024] Open
Abstract
Miltefosine (MLT) is an alkylphosphocholine with clinical success as an anticancer and antiparasitic drug. Although the mechanism of action of MLT is highly debated, the interaction of MLT with the membrane, specifically lipid rafts of eukaryotes, is well-documented. Recent reports suggest MLT impacts the functional membrane microdomains in bacteria - regions of the membrane structurally and functionally similar to lipid rafts. There have been conflicting reports, however, as to whether MLT impacts the overall fluidity of cellular plasma membranes. Here, we apply steady-state fluorescence techniques, generalized polarization of laurdan and anisotropy of diphenylhexatriene, to discern how MLT impacts the global ordering and lipid packing of Staphylococcus aureus membranes. Additionally, we investigate how the transport of a range of small molecules is impacted by MLT for S. aureus and Bacillus subtilis by employing time-resolved second harmonic scattering. Overall, we observe MLT does not have an influence on the overall ordering and packing of S. aureus membranes. Additionally, we show that the transport of small molecules across the membrane can be significantly altered by MLT - although this is not the case for all molecules studied. The results presented here illustrate the potential use of MLT as an adjuvant to assist in the delivery of drug molecules in bacteria.
Collapse
|
4
|
Zhu K, Han Y, Jian Y, Jiang G, Lu D, Liu Z. Anionic cardiolipin stabilizes the transmembrane region of hyaluronan synthase and promotes catalysis-relevant dynamics. Arch Biochem Biophys 2024; 761:110165. [PMID: 39332577 DOI: 10.1016/j.abb.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan essential for cellular processes and finding increasingly applications in medicine, pharmaceuticals, and cosmetics. While membrane-integrated Class I hyaluronan synthase (HAS) catalyzes HA synthesis in most organisms, the molecular mechanisms by which HAS-lipid interactions impact HAS catalysis remain unclear. This study employed coarse-grained molecular dynamics simulation combined with dimensionality reduction to uncover the interplay between lipids and Streptococcus equisimilis HAS (SeHAS). A minimum of 67 % cardiolipin is necessary for HA synthesis, as determined through simulations using gradient-composed membranes. The anionic cardiolipin stabilizes the cationic transmembrane regions of SeHAS and thereby maintains its conformation. Moreover, the highly dynamic cardiolipin is required to modulate the catalysis-relevant motions in HAS and thus facilitate HA synthesis. These findings provide molecular insights essential not only for understanding the physiological functions of HAS, but also for the development of cell factories and enzyme catalysts for HA production.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yilei Han
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yupei Jian
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Diannan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Walczak-Skierska J, Ludwiczak A, Sibińska E, Pomastowski P. Environmental Influence on Bacterial Lipid Composition: Insights from Pathogenic and Probiotic Strains. ACS OMEGA 2024; 9:37789-37801. [PMID: 39281888 PMCID: PMC11391446 DOI: 10.1021/acsomega.4c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
The lipid composition of bacterial membranes is pivotal in regulating bacterial physiology, pathogenicity, and interactions with hosts. This study presents a comprehensive analysis of bacterial membrane lipid profiles across diverse Gram-positive and Gram-negative species. Utilizing matrix-assisted laser desorption/ionization (MALDI) in conjunction with advanced chemometric tools, we investigate the influence of environmental factors, isolation sources, and host metabolism on bacterial lipid profiles. Our findings unveil significant variations in lipid composition attributed to factors such as carbon/energy availability and exposure to chemicals, including antibiotics. Moreover, we identify distinct lipidomic signatures associated with pathogenic and probiotic bacterial strains, shedding light on their functional properties and metabolic pathways. Notably, bacterial strains isolated from clinical samples exhibit unique lipid profiles influenced by host metabolic dysregulation, particularly evident in conditions such as diabetic foot infections. These results deepen our understanding of the intricate mechanisms governing bacterial membrane lipid biology and hold promise for informing the development of innovative therapeutic and biotechnological strategies.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Agnieszka Ludwiczak
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Str., Toruń 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| |
Collapse
|
6
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
van Aalst EJ, Yekefallah M, A M van Beekveld R, Breukink E, Weingarth M, Wylie BJ. Coordination of bilayer properties by an inward-rectifier K + channel is a cooperative process driven by protein-lipid interaction. J Struct Biol X 2024; 9:100101. [PMID: 38883399 PMCID: PMC11176924 DOI: 10.1016/j.yjsbx.2024.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Roy A M van Beekveld
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Markus Weingarth
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
8
|
Pan H, Shim A, Lubin MB, Belin BJ. Hopanoid lipids promote soybean -Bradyrhizobium symbiosis. mBio 2024; 15:e0247823. [PMID: 38445860 PMCID: PMC11005386 DOI: 10.1128/mbio.02478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 03/07/2024] Open
Abstract
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu-shc::∆shc. GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta, Pcu-shc::∆shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within the host tissue. RNA-seq revealed that hopanoid loss reduces the expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances the expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. A major problem for global sustainability is feeding our exponentially growing human population while available arable land decreases. Harnessing the power of plant-beneficial microbes is a potential solution, including increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically significant host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
Collapse
Affiliation(s)
- Huiqiao Pan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Ashley Shim
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew B. Lubin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brittany J. Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Lee TH, Charchar P, Separovic F, Reid GE, Yarovsky I, Aguilar MI. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem Sci 2024; 15:3408-3427. [PMID: 38455013 PMCID: PMC10915831 DOI: 10.1039/d3sc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Patrick Charchar
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
- Department of Biochemistry and Pharmacology, University of Melbourne Parkville VIC 3010 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
10
|
Múnera-Jaramillo J, López GD, Suesca E, Carazzone C, Leidy C, Manrique-Moreno M. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184288. [PMID: 38286247 DOI: 10.1016/j.bbamem.2024.184288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.
Collapse
Affiliation(s)
- Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia; PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá D.C., Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
11
|
Liu X, Guo X, Su X, Ji B, Chang Y, Huang Q, Zhang Y, Wang X, Wang P. Extracellular Vehicles from Commensal Skin Malassezia restricta Inhibit Staphylococcus aureus Proliferation and Biofilm Formation. ACS Infect Dis 2024; 10:624-637. [PMID: 38295002 DOI: 10.1021/acsinfecdis.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The colonizing microbiota on the body surface play a crucial role in barrier function. Staphylococcus aureus (S. aureus) is a significant contributor to skin infection, and the utilization of colonization resistance of skin commensal microorganisms to counteract the invasion of pathogens is a viable approach. However, most studies on colonization resistance have focused on skin bacteria, with limited research on the resistance of skin fungal communities to pathogenic bacteria. Extracellular vehicles (EVs) play an important role in the colonization of microbial niches and the interaction between distinct strains. This paper explores the impact of Malassezia restricta (M. restricta), the fungus that dominates the normal healthy skin microbiota, on the proliferation of S. aureus by examining the distribution disparities between the two microorganisms. Based on the extraction of EVs, the bacterial growth curve, and biofilm formation, it was determined that the EVs of M. restricta effectively suppressed the growth and biofilm formation of S. aureus. The presence of diverse metabolites was identified as the primary factor responsible for the growth inhibition of S. aureus, specifically in relation to glycerol phospholipid metabolism, ABC transport, and arginine synthesis. These findings offer valuable experimental evidence for understanding microbial symbiosis and interactions within healthy skin.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaomin Su
- Shaanxi Province Blood Center, Xi'an, Shaanxi 710061, China
| | - Bingru Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Shaanxi Province Blood Center, Xi'an, Shaanxi 710061, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
12
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
13
|
Pan H, Shim A, Lubin MB, Belin BJ. Hopanoid lipids promote soybean- Bradyrhizobium symbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556284. [PMID: 37732186 PMCID: PMC10508751 DOI: 10.1101/2023.09.04.556284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, the most economically significant Bradyrhizobium host, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu- shc ::Δ shc . GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta , Pcu- shc ::Δ shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within host tissue. RNA-seq revealed that hopanoid loss reduces expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. IMPORTANCE A major problem for global sustainability is feeding our exponentially growing human population while available arable land is decreasing, especially in areas with the greatest population growth. Harnessing the power of plant-beneficial microbes has gained attention as a potential solution, including the increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically important host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
Collapse
|