1
|
Zhang Y, Ning D, Nie J, Hou X, Li W, Gan Z, Lu Y. Evaluation of protective immune response of live-attenuated candidate vaccines ΔcpxA and ΔcpxR against Vibrio alginolyticus in pearl gentian grouper. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110183. [PMID: 39929285 DOI: 10.1016/j.fsi.2025.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
The grouper farming industry was severely influenced by vibriosis. In this study, we developed two live-attenuated vaccine (LAV) candidates against Vibrio alginolyticus infection in pearl gentian groupers using cpxA or cpxR mutant strains of V. alginolyticus (ΔcpxA and ΔcpxR). Groupers were administrated with ΔcpxA and ΔcpxR at the dose of 1.0 × 104 CFU/fish (safety dose) to evaluate the immune protect effect of LAV. The increasing median lethal dose (LD50) of ΔcpxA and ΔcpxR indicated the decreased virulence of bacteria to groupers. Our results suggested that two LAVs achieved over 70 % relative percent survival (RPS) after groupers were challenged by V. alginolyticus on 14 days post-immunization. The immune protection was mainly attributed to the up-regulation of immune-related gene expression (IL-6, IL-12, TNF-α, TLR2, TLR5S, CD4, MHC-Iα, IFN-γ2 and NF-κB), the higher activities of catalase (CAT), lysozyme (LZM), superoxide dismutase (SOD), and the increasing production of total protein (TP) in serum. The research indicated that the vaccination of fish with ΔcpxA and ΔcpxR can induce the innate and acquired immunity and survival rate of groupers after bacterial infection, so they can be considered as the promising candidates of vaccine for grouper industry.
Collapse
Affiliation(s)
- Yilin Zhang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Deyu Ning
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiachun Nie
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoyong Hou
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenze Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Yang L, Zhang J, Chen Z, Chen Y, Wang C, Yu H, Zuo F, Huang W. Probiotic-Enzyme Synergy Regulates Fermentation of Distiller's Grains by Modifying Microbiome Structures and Symbiotic Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5363-5375. [PMID: 39977582 DOI: 10.1021/acs.jafc.4c11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The high fiber content and low rumen digestibility prevent the efficient use of distiller's grains (DGS) in ruminant feeds. This study investigated the effects of probiotics (Lactiplantibacillus plantarum and Bacillus subtilis) and enzymes (β-glucanase, xylanase, β-mannanase, and cellulase) on DGS nutrient content, ruminal degradability, and microbial communities under anaerobic storage for 30 days. Groups included control (C), probiotics (B), enzymes (E), and their mixture (EB). As compared to groups C, B, and E, neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, and cellulose contents were significantly decreased and the ruminal degradability of NDF and ADF at 48 h was significantly increased in group EB (p < 0.05). Enzyme activities significantly affected bacterial abundance, and the contents of these enzymes were negatively correlated with the content of fibrous components. The abundances of Bacillus and Rummeliibacillus were negatively correlated with fiber content but positively correlated with the activities of these enzymes. The symbiotic relationship between Bacillus and Anaerocolumna in the EB group sustained the synergistic effects of probiotics and enzymes. Co-fermentation of probiotics and enzyme additives enhanced the nutritional value of DGS, which was associated not only with probiotic-enzyme synergy but also variations in dominant microbes and microbiome commensal relationships.
Collapse
Affiliation(s)
- Liandi Yang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Zhihua Chen
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yanqing Chen
- Beijing Challenge Biotechnology Co., Beijing 100081, China
| | - Changtong Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Hulong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Wenming Huang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| |
Collapse
|
3
|
Adade NE, Ahator SD, García-Romero I, Algarañás M, Appiah V, Valvano MA, Duodu S. Stress adaptation under in vitro evolution influences survival and metabolic phenotypes of clinical and environmental strains of Vibrio cholerae El-Tor. Microbiol Spectr 2025; 13:e0121124. [PMID: 39932327 DOI: 10.1128/spectrum.01211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Bacterial adaptation to stress can lead to phenotypic variants with diverse levels of niche competitiveness, pathogenicity, and antimicrobial resistance. In this work, we employed experimental evolution to investigate whether exposure to various stress conditions results in new phenotypic and metabolic properties in clinical and environmental strains of Vibrio cholerae. Our findings revealed the emergence of variants with metabolic and genetic variations and enhanced survival under stress compared to the parental isolates. Phenotypic changes in the evolved variants included colony morphology, biofilm formation, and the appearance of proteolytic and hemolytic activities. The variants demonstrated metabolic changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates, while the genetic changes included single nucleotide polymorphisms (SNPs), breakpoints, translocations, and single nucleotide insertions and deletions. Mutations in genes encoding EAL and HD-GYP domain-containing proteins correlated with increased biofilm formation and different colony morphotypes. The combined analysis of the metabolic and genomic data pointed to pathways implicated in stress survival. The environmental strains were generally more pathogenic than the clinical strains in the Galleria mellonella infection model prior to the experimental evolution, and these differences did not change in the evolved variants. This study highlights the contribution of stress conditions as drivers for the evolution of genetic modifications and metabolic adaptation in V. cholerae, which may explain the continuous evolution of El-Tor biotype strains toward variants with improved survival in the environment.IMPORTANCEHow Vibrio cholerae, the causative agent of cholera, survives during the periods between outbreaks remains a critical question. Using experimental evolution based on serial bacterial passages in culture media mimicking diverse environmental stress conditions, we investigated whether clinical and environmental isolates of V. cholerae develop changes in survival and in their metabolism. The evolved variants exhibited alterations in colony morphology, biofilm formation, and metabolism, including changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates. These changes were accompanied by various genetic modifications, notably in genes encoding second messenger molecules that regulate multiple biochemical pathways implicated in stress survival and increased pathogenic potential. Our results suggest a continuous evolution of V. cholerae strains toward variants displaying increased survival under environmental stress conditions that may also be encountered in the human host.
Collapse
Affiliation(s)
- Nana Eghele Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inmaculada García-Romero
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Macarena Algarañás
- Laboratorio de Biofilms Microbianos, CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Miguel A Valvano
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Liu S, Feng X, Zhang H, Li P, Yang B, Gu Q. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Microbiol Res 2025; 292:127995. [PMID: 39657399 DOI: 10.1016/j.micres.2024.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces "signalomics", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Jiménez-Leiva A, Juárez-Martos RA, Cabrera JJ, Torres MJ, Mesa S, Delgado MJ. Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Antioxid Redox Signal 2025; 42:408-420. [PMID: 39868566 DOI: 10.1089/ars.2024.0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Aims: To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont Bradyrhizobium diazoefficiens. Results: We have performed an integrated study of norCBQD expression and NO reductase activity in regR, regS1, regS2, regS1/2, and nifA mutants in response to microoxia (2% O2) or anoxia. An activating role of RegR and NifA was observed under anoxia. In contrast, under microaerobic conditions, RegR acts as a repressor by binding to a RegR box located between the -10 and -35 regions within the norCBQD promoter. In addition, both RegS1 and RegS2 sensors cooperated with RegR in repressing norCBQD genes. Innovation: NO is a reactive gas that, at high levels, acts as a potent inhibitor of symbiotic nitrogen fixation. In this paper, we report new insights into the regulation of NO reductase, the major enzyme involved in NO removal in rhizobia. This knowledge will be crucial for the development of new strategies and management practices in agriculture, in particular, for improving legume production. Conclusion: Our results demonstrate, for the first time, a dual control of the RegSR two-component regulatory system on norCBQD genes control in response to oxygen levels. Antioxid. Redox Signal. 42, 408-420.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Raquel A Juárez-Martos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María J Torres
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
6
|
You M, Ren Z, Ye L, Zhao Q, Liu Z, Song H, Xu C. Combining transcriptomic and metabolomic insights into carbohydrate utilization by Ruminiclostridium papyrosolvens DSM2782. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:22. [PMID: 39987219 PMCID: PMC11847368 DOI: 10.1186/s13068-025-02619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable bioresource on earth, and its biodegradation and utilization would contribute to the sustainable development of the global environment. Ruminiclostridium papyrosolvens, an anaerobic, mesophilic, and cellulolytic bacterium, produces an enzymatic complex known as the cellulosome. As one of the most highly evolved species among Ruminiclostridium-type species, R. papyrosolvens is particularly relevant for understanding how cellulolytic clostridia modulate their biomass degradation mechanisms in response to diverse carbon sources. RESULTS Our study investigates the transcriptional responses of Ruminiclostridium papyrosolvens to different carbon sources to understand its lignocellulose utilization. Using RNA-seq, we analyzed gene expression under glucose, cellobiose, xylan, cellulose, and corn stover, identifying distinct metabolic preferences and regulatory responses. We found significant gene expression changes under corn stover compared to other carbon sources, with enrichment in ABC transporters and cell growth pathways. CAZyme gene expression was regulated by TCSs, affecting sugar transporter systems. Metabolic profiling showed R. papyrosolvens produced more complex metabolites during corn stover fermentation, revealing its adaptability to various carbon sources and implications for metabolic engineering. CONCLUSION This study not only uncovers the intricate response mechanisms of R. papyrosolvens to lignocellulose and its hydrolysates, but it also outlines the strategy for using R. papyrosolvens as a cellulolytic chassis in genetic engineering.
Collapse
Affiliation(s)
- Mengcheng You
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Letian Ye
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Qiuyun Zhao
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Ziyi Liu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Houhui Song
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China.
| | - Chenggang Xu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
7
|
Li X, Wang J, Su C, Guo C, Xu Z, Wang K, Pang J, Lv B, Wang C, Li C. The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona. Appl Microbiol Biotechnol 2025; 109:14. [PMID: 39836216 PMCID: PMC11750948 DOI: 10.1007/s00253-024-13390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S. pogona H2 was generated by Cobalt-60 γ-ray mutagenesis, which showed a 2.7-fold increase in production compared to the wild-type strain S. pogona ASAGF58. A comparative transcriptomic analysis between S. pogona ASAGF58 and H2 was performed to elucidate the high-production mechanism that more precursors and energy were used to synthesize of butenyl-spinosyn. Fortunately, a PurR family transcriptional regulator TF00350 was discovered. TF00350 overexpression strain RS00350 induced morphological differentiation and butenyl-spinosyn production, ultimately leading to a 5.5-fold increase in butenyl-spinosyn production (141.5 ± 1.03 mg/L). Through transcriptomics analysis, most genes related to purine metabolism pathway were downregulated, and the butenyl-spinosyn biosynthesis gene was upregulated by increasing the concentration of c-di-GMP and decreasing the concentration of c-di-AMP. These results provide valuable insights for further mining key regulators and improving butenyl-spinosyn production. KEY POINTS: • A high production strain of S. pogona H2 was obtained by 60Co γ-ray mutagenesis. • Positive regulator TF00350 identified by transcriptomics, increasing butenyl-spinosyn production by 5.5-fold. • TF00350 regulated of butenyl-spinosyn production by second messengers.
Collapse
Affiliation(s)
- Xinying Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Jingnan Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Chang Su
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Chao Guo
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Zhouqin Xu
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Kehui Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Jian Pang
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chao Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Hu M, Zhou Z, Liu C, Zhan Z, Cui Y, He S, Shi X. Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods 2024; 13:3709. [PMID: 39594124 PMCID: PMC11594007 DOI: 10.3390/foods13223709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Two-component systems (TCS) of Salmonella enterica serovar Enteritidis are composed of a histidine kinase and a response regulator (RR) and represent a critical mechanism by which bacteria develop resistance to environmental stress. Here, we characterized the functions of RRs in TCS in the formation of stress tolerance, motility and biofilm using twenty-six S. Enteritidis RR-encoding gene deletion mutants. The viability results unraveled their essential roles in resistance to elevated temperature (GlrR), pH alterations (GlrR, TctD, YedW, ArcA and YehT), high salt (PhoB, BaeR, CpxR, PhoP, UvrY and TctD), oxidative stress (PhoB, YedW, BaeR, ArcA, PhoP, UvrY, PgtA and QseB) and motility (ArcA, GlnG, PgtA, PhoB, UhpA, OmpR, UvrY and QseB) of S. Enteritidis. The results of the crystal violet staining, microscopy observation and Congo red binding assays demonstrated that the absence of ArcA, GlnG, PhoP, OmpR, ZraR or SsrB in S. Enteritidis led to a reduction in biofilms and an impairment in red/dry/rough macrocolony formation, whereas the absence of UvrY exhibited an increase in biofilms and formed a brown/smooth/sticky macrocolony. The results indicated the regulatory effects of these RRs on the production of biofilm matrix, curli fimbriae and cellulose. Our findings yielded insights into the role of TCSs, making them a promising target for combating S. Enteritidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (Z.Z.); (C.L.); (Z.Z.); (Y.C.); (S.H.)
| |
Collapse
|
9
|
Das S, Pradhan T, Panda SK, Behera AD, Kumari S, Mallick S. Bacterial biofilm-mediated environmental remediation: Navigating strategies to attain Sustainable Development Goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122745. [PMID: 39383746 DOI: 10.1016/j.jenvman.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Bacterial biofilm is a structured bacterial community enclosed within a three-dimensional polymeric matrix, governed by complex signaling pathways, including two-component systems, quorum sensing, and c-di-GMP, which regulate its development and resistance in challenging environments. The genetic configurations within biofilm empower bacteria to exhibit significant pollutant remediation abilities, offering a promising strategy to tackle diverse ecological challenges and expedite progress toward Sustainable Development Goals (SDGs). Biofilm-based technologies offer advantages such as high treatment efficiency, cost-effectiveness, and sustainability compared to conventional methods. They significantly contribute to agricultural improvement, soil fertility, nutrient cycling, and carbon sequestration, thereby supporting SDG 1 (No poverty), SDG 2 (Zero hunger), SDG 13 (Climate action), and SDG 15 (Life on land). In addition, biofilm facilitates the degradation of organic-inorganic pollutants from contaminated environments, aligning with SDG 6 (Clean water and sanitation) and SDG 14 (Life below water). Bacterial biofilm also has potential applications in industrial innovation, aligning SDG 7 (Affordable and clean energy), SDG 8 (Decent work and economic growth), and SDG 9 (Industry, innovation, and infrastructure). Besides, bacterial biofilm prevents several diseases, aligning with SDG 3 (Good health and well-being). Thus, bacterial biofilm-mediated remediation provides advanced opportunities for addressing environmental issues and progressing toward achieving the SDGs. This review explores the potential of bacterial biofilms in addressing soil pollution, wastewater, air quality improvement, and biodiversity conservation, emphasizing their critical role in promoting sustainable development.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Sourav Kumar Panda
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Abhaya Dayini Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| |
Collapse
|
10
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Guo J, Qiu X, Xie YG, Hua ZS, Wang Y. Regulation of intracellular process by two-component systems: Exploring the mechanism of plasmid-mediated conjugative transfer. WATER RESEARCH 2024; 259:121855. [PMID: 38838482 DOI: 10.1016/j.watres.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.
Collapse
Affiliation(s)
- Jingjing Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Guo Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Shuang Hua
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
12
|
Lassak J, Tschowri N. Editorial overview: Linking cellular regulation and metabolic functions: from signals to mechanisms. Curr Opin Microbiol 2024; 80:102513. [PMID: 39024913 DOI: 10.1016/j.mib.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Jürgen Lassak
- Chair of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany.
| |
Collapse
|
13
|
Czajkowski R, Krzyżanowska DM, Sokolova D, Rąbalski Ł, Kosiński M, Jafra S, Królicka A. Genetic Loci of Plant Pathogenic Dickeya solani IPO 2222 Expressed in Contact with Weed-Host Bittersweet Nightshade ( Solanum dulcamara L.) Plants. Int J Mol Sci 2024; 25:2794. [PMID: 38474041 PMCID: PMC10931765 DOI: 10.3390/ijms25052794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.
Collapse
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143 Kyiv, Ukraine
| | - Łukasz Rąbalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Maciej Kosiński
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland;
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| |
Collapse
|