1
|
Survival of Brucella abortus S19 and other Brucella spp. in the presence of oxidative stress and within macrophages. Folia Microbiol (Praha) 2020; 65:879-894. [PMID: 32462327 PMCID: PMC8219583 DOI: 10.1007/s12223-020-00798-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
Abstract
The evolutionary “success” of the genus Brucella depends on the ability to persist both in the environment as well as inside of even activated macrophages of the animal host. For that, the Brucellae produce catalase and superoxide dismutase to defend against oxidative stress. Since the deletion of the mglA gene in the B. abortus S19 vaccine strain resulted not only in an increased tolerance to H2O2 but also in the induction of cytokines in macrophages, we here investigated the effect of oxidative stress (Fe2+ and H2O2) on the survival of B. abortus S19 and the isogenic B. abortus S 19 ∆mglA 3.14 deletion mutant in comparison with B. neotomae 5K33, Brucella strain 83/13, and B. microti CCM4915. These Brucellae belong to different phylogenetic clades and show characteristic differences in the mgl-operon. From the various Brucellae tested, B. abortus S19 showed the highest susceptibility to oxidative stress and the lowest ability to survive inside of murine macrophages. B. abortus S19 ∆mglA 3.14 as well as B. neotomae, which also belongs to the classical core clade of Brucella and lacks the regulators of the mgl-operon, presented the highest degree of tolerance to H2O2 but not in the survival in macrophages. The latter was most pronounced in case of an infection with B. 83/13 and B. microti CCM4915. The various Brucellae investigated here demonstrate significant differences in tolerance against oxidative stress and different survival in murine macrophages, which, however, do not correlate directly.
Collapse
|
2
|
Irvine S, Bunk B, Bayes HK, Spröer C, Connolly JPR, Six A, Evans TJ, Roe AJ, Overmann J, Walker D. Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model. Microb Genom 2019; 5:e000262. [PMID: 30920365 PMCID: PMC6521587 DOI: 10.1099/mgen.0.000262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/10/2019] [Indexed: 01/26/2023] Open
Abstract
Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.
Collapse
Affiliation(s)
- Sharon Irvine
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Boyke Bunk
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Hannah K. Bayes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathrin Spröer
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
| | - James P. R. Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anne Six
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Thomas J. Evans
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J. Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jörg Overmann
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Melenotte C, Drancourt M, Gorvel JP, Mège JL, Raoult D. Post-bacterial infection chronic fatigue syndrome is not a latent infection. Med Mal Infect 2019; 49:140-149. [DOI: 10.1016/j.medmal.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
|
4
|
Suárez-Esquivel M, Ruiz-Villalobos N, Castillo-Zeledón A, Jiménez-Rojas C, Roop Ii RM, Comerci DJ, Barquero-Calvo E, Chacón-Díaz C, Caswell CC, Baker KS, Chaves-Olarte E, Thomson NR, Moreno E, Letesson JJ, De Bolle X, Guzmán-Verri C. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains. Front Microbiol 2016; 7:1557. [PMID: 27746773 PMCID: PMC5041503 DOI: 10.3389/fmicb.2016.01557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022] Open
Abstract
Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica Heredia, Costa Rica
| | - Nazareth Ruiz-Villalobos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica Heredia, Costa Rica
| | - Amanda Castillo-Zeledón
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica Heredia, Costa Rica
| | - César Jiménez-Rojas
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica Heredia, Costa Rica
| | - R Martin Roop Ii
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión Nacional de Energía Atómica, Grupo Pecuario, Centro Atómico Ezeiza Buenos Aires, Argentina
| | - Elías Barquero-Calvo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| | - Carlos Chacón-Díaz
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa RicaHeredia, Costa Rica; Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| | - Clayton C Caswell
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Kate S Baker
- Wellcome Trust Sanger InstituteHinxton, UK; Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of LiverpoolLiverpool, UK
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| | - Nicholas R Thomson
- Wellcome Trust Sanger InstituteHinxton, UK; The London School of Hygiene and Tropical MedicineLondon, UK
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa RicaHeredia, Costa Rica; Instituto Clodomiro Picado, Universidad de Costa RicaSan José, Costa Rica
| | - Jean J Letesson
- Unité de Recherche en Biologie des Microorganismes, Université de Namur Namur Belgium
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes, Université de Namur Namur Belgium
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa RicaHeredia, Costa Rica; Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| |
Collapse
|
5
|
Day M. Yeast petites and small colony variants: for everything there is a season. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:1-41. [PMID: 23942147 DOI: 10.1016/b978-0-12-407672-3.00001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel.
Collapse
Affiliation(s)
- Martin Day
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Jacob J, Makou P, Finke A, Mielke M. Inflammatory response of TLR4 deficient spleen macrophages (CRL 2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant. Int J Med Microbiol 2016; 306:141-51. [PMID: 26946956 DOI: 10.1016/j.ijmm.2016.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Brucellosis is a worldwide distributed zoonosis caused by members of the genus Brucella. One of them, Brucella abortus, is the etiological agent of bovine brucellosis. With the attenuated strain B. abortus S19 a vaccine is available. However, both, virulence (safety) and the ability to induce a protective B and T cell response (efficacy) have to be tested in suitable assays before successful use in the field. For this purpose, several macrophage cell lines of various origins have been used while splenic macrophages are the preferred host cells in vivo. We here characterized the in vitro response of the murine splenic macrophage cell line CRL 2471(I-13.35) to B. abortus. This cell line still depends on the presence of colony-stimulating factor 1 (CSF1) and is derived from LPS resistant (TLR4 deficient) C3H/HeJ mice. For infection the vaccine strain B. abortus S19A as well as the formerly described isogenic deletion mutant B. abortus S19A ΔmglA 3.14 were used. While numbers of viable bacteria did not differ significantly between the vaccine strain and the deletion mutant at 6h post infection, a higher bacterial load was measured in case of the mutant at 24h and 48h after infection. This was also true, when IFNγ was used for macrophage activation. A comprehensive gene expression profile of macrophages was analysed 6 and 24h after infection by means of an RT-PCR based gene expression array. The mutant strain B. abortus S19A ΔmglA 3.14 elicited a stronger cellular response of the splenic macrophages as compared to the parental vaccine strain. This was most prominent for the pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL6 as well as for the chemokine ligands CXCL1, CXCL2, CXCL10, CCL2, CCL5, CCL7, CCL17 and the co-stimulatory molecules CD40 and ICAM1. While these differences were also present in IFNγ-stimulated macrophages, an addition of IFNγ after infection not only resulted in a dramatic increase of the translation of the afore mentioned genes but also resulted in the translation of IFNß1, IL12ß, MIP1α and β (CCL3, CCL4), NOS2 (and SOD2) and FAS. CONCLUSION The TLR4 deficient murine splenic macrophage cell line CRL 2471 was used for the first time for the characterization of macrophage-Brucella interaction to investigate the pre-immune phase of brucellosis in vitro. Typical pro-inflammatory cytokines and certain surface receptors were differentially induced by B. abortus S19 A and an isogenic ΔmglA deletion mutant in vitro. This model may be useful for further studies to characterize the inflammatory response of splenic macrophages to intracellular gram-negative bacteria avoiding cell responses to soluble LPS.
Collapse
Affiliation(s)
- Jens Jacob
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Patricia Makou
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Antje Finke
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Martin Mielke
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
7
|
Park S, Choi YS, Park SH, Kim YR, Chu H, Hwang KJ, Park MY. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774.A1 Macrophage. Osong Public Health Res Perspect 2013; 4:301-7. [PMID: 24524018 PMCID: PMC3922098 DOI: 10.1016/j.phrp.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022] Open
Abstract
Objectives The objective of this study was to isolate a Brucella lon mutant and to analyze the cytokine response of B. lon mutant during macrophage infection. Methods A wild-type Brucella abortus strain was mutagenized by Tn5 transposition. From the mouse macrophage J774.A1 cells, total RNA was isolated at 0 hours, 6 hours, 12 hours, and 24 hours after infection with Brucella. Using mouse cytokine microarrays, we measured transcriptional levels of the cytokine response, and validated our results with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay to confirm the induction of cytokine messenger RNA (mRNA). Results In host J774.A1 macrophages, mRNA levels of T helper 1 (Th1)-type cytokines, including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-2 (IL-2), and IL-3, were significantly higher in the lon mutant compared to wild-type Brucella and the negative control. TNF-α levels in cell culture media were induced as high as 2 μg/mL after infection with the lon mutant, a greater than sixfold change. Conclusion In order to understand the role of the lon protein in virulence, we identified and characterized a novel B. lon mutant. We compared the immune response it generates to the wild-type Brucella response in a mouse macrophage cell line. We demonstrated that the B. lon mutants induce TNF-α expression from the host J774.A1 macrophage.
Collapse
Affiliation(s)
- Sungdo Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Young-Sill Choi
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Sang-Hee Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Young-Rok Kim
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Hyuk Chu
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Kyu-Jam Hwang
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Mi-Yeoun Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| |
Collapse
|
8
|
The mglA gene and its flanking regions in Brucella: the role of mglA in tolerance to hostile environments, Fe-metabolism and in vivo persistence. Int J Med Microbiol 2012; 302:148-54. [PMID: 22534190 DOI: 10.1016/j.ijmm.2012.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that a spontaneous smooth small-colony variant of Brucella abortus S19 is characterized by increased in vivo persistence and the differential expression of a gene predicted to encode a galactoside transport ATP binding protein (mglA). In order to further investigate the role of this gene in the context of its flanking regions, we analyzed the respective DNA sequences from the formerly described B. abortus S19 as well as from avirulent B. neotomae 5K33 and compared these with published data from other Brucella species. Deletion mutagenesis of mglA in the large-colony variant of B. abortus S19 resulted in increased tolerance of the deletion mutant to a hyperosmotic (toxic), galactose-containing medium as well as to oxidative stress (H(2)O(2)). Whilst the deletion mutant is characterized by reduced growth on solid Fe(3+)-containing minimal medium (small-colony morphology), in vivo studies in mice demonstrated statistical significant differences in the bacterial load of spleens in the pre-immune, but not in the late phase of the infection.
Collapse
|
9
|
Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS One 2010; 5. [PMID: 20844759 PMCID: PMC2937029 DOI: 10.1371/journal.pone.0012679] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In many bacteria, the phosphotransferase system (PTS) is a key player in the regulation of the assimilation of alternative carbon sources notably through catabolic repression. The intracellular pathogens Brucella spp. possess four PTS proteins (EINtr, NPr, EIIANtr and an EIIA of the mannose family) but no PTS permease suggesting that this PTS might serve only regulatory functions. METHODOLOGY/PRINCIPAL FINDINGS In vitro biochemical analyses and in vivo detection of two forms of EIIANtr (phosphorylated or not) established that the four PTS proteins of Brucella melitensis form a functional phosphorelay. Moreover, in vitro the protein kinase HprK/P phosphorylates NPr on a conserved serine residue, providing an additional level of regulation to the B. melitensis PTS. This kinase activity was inhibited by inorganic phosphate and stimulated by fructose-1,6 bisphosphate. The genes encoding HprK/P, an EIIAMan-like protein and NPr are clustered in a locus conserved among α-proteobacteria and also contain the genes for the crucial two-component system BvrR-BvrS. RT-PCR revealed a transcriptional link between these genes suggesting an interaction between PTS and BvrR-BvrS. Mutations leading to the inactivation of EINtr or NPr significantly lowered the synthesis of VirB proteins, which form a type IV secretion system. These two mutants also exhibit a small colony phenotype on solid media. Finally, interaction partners of PTS proteins were identified using a yeast two hybrid screen against the whole B. melitensis ORFeome. Both NPr and HprK/P were shown to interact with an inorganic pyrophosphatase and the EIIAMan-like protein with the E1 component (SucA) of 2-oxoglutarate dehydrogenase. CONCLUSIONS/SIGNIFICANCE The B. melitensis can transfer the phosphoryl group from PEP to the EIIAs and a link between the PTS and the virulence of this organism could be established. Based on the protein interaction data a preliminary model is proposed in which this regulatory PTS coordinates also C and N metabolism.
Collapse
|
10
|
Petersen A, Chadfield MS, Christensen JP, Christensen H, Bisgaard M. Characterization of small-colony variants of Enterococcus faecalis isolated from chickens with amyloid arthropathy. J Clin Microbiol 2008; 46:2686-91. [PMID: 18579713 PMCID: PMC2519495 DOI: 10.1128/jcm.00343-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/14/2008] [Accepted: 06/19/2008] [Indexed: 11/20/2022] Open
Abstract
In this study we report the isolation and characterization of normal-sized and small-colony variants of Enterococcus faecalis from outbreaks of amyloid arthropathy in chickens. Postmortem examinations of 59 chickens revealed orange deposits in the knee joints, typical for amyloid arthropathy. Bacterial cultures from 102 joints and 43 spleens exhibited pure (n = 88) and mixed (n = 11) cultures of normal (n = 60) and pinpoint (n = 28) colonies of E. faecalis. Pulsed-field gel electrophoresis of 62 isolates demonstrated seven different band patterns with at most two band size variations, and multilocus sequence typing demonstrated two different sequence types, sharing six out of seven alleles, suggesting a close evolutionary relationship between isolates obtained from four outbreaks. In addition, all isolates were clonally related to an amyloid arthropathy reference strain from The Netherlands, previously shown to be globally dispersed. Initial investigation of the isolated small-colony variant phenotype revealed no difference in whole-cell protein profiling between normal and pinpoint colonies. However, the pinpoint colony isolates appeared to be more virulent in an in vivo challenge model in chickens than their normal-sized-colony counterparts. In addition, pinpoint morphology and associated slow growth were expressed without reversion after in vitro and in vivo passage, suggesting a genuine altered phenotype, and in some instances normal colonies converted to pinpoint morphology postinfection. In conclusion, small-colony variants of E. faecalis are described for the first time from veterinary clinical sources and in relation to amyloid arthropathy in chickens.
Collapse
Affiliation(s)
- Andreas Petersen
- University of Copenhagen, Faculty of Life Sciences, Department of Veterinary Pathobiology, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
11
|
Hsu YM, Shieh HK, Chen WH, Sun TY, Shiang JH. Antimicrobial susceptibility, plasmid profiles and haemocin activities of Avibacterium paragallinarum strains. Vet Microbiol 2007; 124:209-18. [PMID: 17485180 DOI: 10.1016/j.vetmic.2007.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 11/26/2022]
Abstract
In this study, 18 Avibacterium paragallinarum isolates collected in Taiwan from 1990 to 2003 were serotyped and tested for resistance to antimicrobial agents. Serotyping revealed that 13 isolates were Page serovar A and 5 isolates were Page serovar C. More than 75% of the isolates were resistant to neomycin, streptomycin and erythromycin. The most common resistance pattern (15 isolates, 83.3%) was neomycin-streptomycin. Furthermore, 88.9% of the isolates were resistant to two or more antibiotics. About 72% of isolates contained plasmids (pYMH5 and/or pA14). Plasmid pYMH5 encoded functional streptomycin, sulfonamide, kanamycin and neomycin resistance genes and revealed significant homology to a broad host-range plasmid, pLS88. Plasmid pA14 encoded a putative MglA protein and RNase II, both of which might be associated with virulence. Furthermore, seven isolates showed haemocin activity. Plasmid pYMH5 is the first multidrug-resistance plasmid reported in A. paragallinarum and it may facilitate the spread of antibiotic-resistance genes between bacteria. The putative virulence plasmid pA14 and haemocin-like activity in A. paragallinarum indicate two possible mechanisms which might be responsible for the pathogenesis.
Collapse
Affiliation(s)
- Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| | | | | | | | | |
Collapse
|