1
|
Cui J, Hu J, Du X, Yan C, Xue G, Li S, Cui Z, Huang H, Yuan J. Genomic Analysis of Putative Virulence Factors Affecting Cytotoxicity of Cronobacter. Front Microbiol 2020; 10:3104. [PMID: 32117082 PMCID: PMC7019382 DOI: 10.3389/fmicb.2019.03104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
Cronobacter spp. can cause systemic infections, such as meningitis, sepsis, and necrotizing enterocolitis, in immunocompromised patients, especially neonates. Although some virulence factors have been reported previously, the pathogenesis of Cronobacter remains unclear. In this study, we compared genome sequences from different Cronobacter species, sequence types, and sources, with the virulence genes in the virulence factor database. The results showed that Cronobacter has species specificity for these virulence genes. Additionally, two gene clusters, including sfp encoding fimbriae and hly encoding hemolysin, were discovered. Through cell adhesion, cytotoxicity, and hemolysis assays, we found that the isolates possessing the two gene clusters had higher cytotoxicity and stronger hemolysis capacity than those of other isolates in this study. Moreover, analysis of type VI secretion system (T6SS) cluster and putative fimbria gene clusters of Cronobacter revealed that T6SS have species specificity and isolates with high cytotoxicity possessed more complete T6SS cluster construction than that of the rest. In conclusion, the two novel gene clusters and T6SS cluster were involved in the mechanism underlying the cytotoxicity of Cronobacter.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinrui Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
2
|
Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells. PLoS One 2016; 11:e0160741. [PMID: 27529172 PMCID: PMC4987058 DOI: 10.1371/journal.pone.0160741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses.
Collapse
|
3
|
Inhülsen S, Aguilar C, Schmid N, Suppiger A, Riedel K, Eberl L. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111. Microbiologyopen 2012; 1:225-42. [PMID: 22950027 PMCID: PMC3426421 DOI: 10.1002/mbo3.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development.
Collapse
Affiliation(s)
- Silja Inhülsen
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Claudio Aguilar
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Nadine Schmid
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Angela Suppiger
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Kathrin Riedel
- Institute of Microbiology, Ernst-Moritz-Arndt University of GreifswaldFriedrich-Ludwig-Jahn-Strasse 15, D-17487, Greifswald,, Germany
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| |
Collapse
|
4
|
Tolman JS, Valvano MA. Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics 2012; 13:63. [PMID: 22321740 PMCID: PMC3296584 DOI: 10.1186/1471-2164-13-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background Burkholderia cenocepacia is an opportunistic pathogen causing life-threatening infections in patients with cystic fibrosis. The bacterium survives within macrophages by interfering with endocytic trafficking and delaying the maturation of the B. cenocepacia-containing phagosome. We hypothesize that B. cenocepacia undergoes changes in gene expression after internalization by macrophages, inducing genes involved in intracellular survival and host adaptation. Results We examined gene expression by intracellular B. cenocepacia using selective capture of transcribed sequences (SCOTS) combined with microarray analysis. We identified 767 genes with significantly different levels of expression by intracellular bacteria, of which 330 showed increased expression and 437 showed decreased expression. Affected genes represented all aspects of cellular life including information storage and processing, cellular processes and signaling, and metabolism. In general, intracellular gene expression demonstrated a pattern of environmental sensing, bacterial response, and metabolic adaptation to the phagosomal environment. Deletion of various SCOTS-identified genes affected bacterial entry into macrophages and intracellular replication. We also show that intracellular B. cenocepacia is cytotoxic towards the macrophage host, and capable of spread to neighboring cells, a role dependent on SCOTS-identified genes. In particular, genes involved in bacterial motility, cobalamin biosynthesis, the type VI secretion system, and membrane modification contributed greatly to macrophage entry and subsequent intracellular behavior of B. cenocepacia. Conclusions B. cenocepacia enters macrophages, adapts to the phagosomal environment, replicates within a modified phagosome, and exhibits cytotoxicity towards the host cells. The analysis of the transcriptomic response of intracellular B. cenocepacia reveals that metabolic adaptation to a new niche plays a major role in the survival of B. cenocepacia in macrophages. This adaptive response does not require the expression of any specific virulence-associated factor, which is consistent with the opportunistic nature of this microorganism. Further investigation into the remaining SCOTS-identified genes will provide a more complete picture of the adaptive response of B. cenocepacia to the host cell environment.
Collapse
Affiliation(s)
- Jennifer S Tolman
- Infectious Diseases Research Group, Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
5
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
6
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Ammendolia MG, Bertuccini L, Iosi F, Minelli F, Berlutti F, Valenti P, Superti F. Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia. Biometals 2010; 23:531-42. [DOI: 10.1007/s10534-010-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022]
|
8
|
Cunha LG, Assis MC, Machado GB, Assef AP, Marques EA, Leão RS, Saliba AM, Plotkowski MC. Potential mechanisms underlying the acute lung dysfunction and bacterial extrapulmonary dissemination during Burkholderia cenocepacia respiratory infection. Respir Res 2010; 11:4. [PMID: 20082687 PMCID: PMC2817657 DOI: 10.1186/1465-9921-11-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/18/2010] [Indexed: 01/06/2023] Open
Abstract
Background Burkholderia cenocepacia, an opportunistic pathogen that causes lung infections in cystic fibrosis (CF) patients, is associated with rapid and usually fatal lung deterioration due to necrotizing pneumonia and sepsis, a condition known as cepacia syndrome. The key bacterial determinants associated with this poor clinical outcome in CF patients are not clear. In this study, the cytotoxicity and procoagulant activity of B. cenocepacia from the ET-12 lineage, that has been linked to the cepacia syndrome, and four clinical isolates recovered from CF patients with mild clinical courses were analysed in both in vitro and in vivo assays. Methods B. cenocepacia-infected BEAS-2B epithelial respiratory cells were used to investigate the bacterial cytotoxicity assessed by the flow cytometric detection of cell staining with propidium iodide. Bacteria-induced procoagulant activity in cell cultures was assessed by a colorimetric assay and by the flow cytometric detection of tissue factor (TF)-bearing microparticles in cell culture supernatants. Bronchoalveolar lavage fluids (BALF) from intratracheally infected mice were assessed for bacterial proinflammatory and procoagulant activities as well as for bacterial cytotoxicity, by the detection of released lactate dehydrogenase. Results ET-12 was significantly more cytotoxic to cell cultures but clinical isolates Cl-2, Cl-3 and Cl-4 exhibited also a cytotoxic profile. ET-12 and CI-2 were similarly able to generate a TF-dependent procoagulant environment in cell culture supernatant and to enhance the release of TF-bearing microparticles from infected cells. In the in vivo assay, all bacterial isolates disseminated from the mice lungs, but Cl-2 and Cl-4 exhibited the highest rates of recovery from mice livers. Interestingly, Cl-2 and Cl-4, together with ET-12, exhibited the highest cytotoxicity. All bacteria were similarly capable of generating a procoagulant and inflammatory environment in animal lungs. Conclusion B. cenocepacia were shown to exhibit cytotoxic and procoagulant activities potentially implicated in bacterial dissemination into the circulation and acute pulmonary decline detected in susceptible CF patients. Improved understanding of the mechanisms accounting for B. cenocepacia-induced clinical decline has the potential to indicate novel therapeutic strategies to be included in the care B. cenocepacia-infected patients.
Collapse
Affiliation(s)
- Luiz G Cunha
- Departamento de Microbiologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Saldías MS, Valvano MA. Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. Microbiology (Reading) 2009; 155:2809-2817. [DOI: 10.1099/mic.0.031344-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Burkholderia cenocepacia is a member of the B. cepacia complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the ‘cepacia syndrome’, a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.
Collapse
Affiliation(s)
- M. Soledad Saldías
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A. Valvano
- Department of Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
MacDonald KL, Speert DP. Differential modulation of innate immune cell functions by theBurkholderia cepaciacomplex:Burkholderia cenocepaciabut notBurkholderia multivoransdisrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol 2008; 10:2138-49. [DOI: 10.1111/j.1462-5822.2008.01197.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Plaza DF, Curtidor H, Patarroyo MA, Chapeton-Montes JA, Reyes C, Barreto J, Patarroyo ME. The Mycobacterium tuberculosis membrane protein Rv2560 − biochemical and functional studies. FEBS J 2007; 274:6352-64. [DOI: 10.1111/j.1742-4658.2007.06153.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|