1
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Jiang L, Huang D, Nie S, Xie M. Polysaccharide isolated from seeds of Plantago asiatica L. induces maturation of dendritic cells through MAPK and NF-κB pathway. Saudi J Biol Sci 2018; 25:1202-1207. [PMID: 30174523 PMCID: PMC6117183 DOI: 10.1016/j.sjbs.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/15/2022] Open
Abstract
Plantago species are used as traditional medicine in Asian and Europe. Polysaccharide isolated from the seeds of Plantago asiatica L. could stimulate maturation transformation of bone-marrow derived dendritic cells (DCs). We found that blocking p38, ERK1/2 and JNK MAPK signal transduction could significantly decreased the PLP-2 induced expression of MHC II, CD86 surface molecules on DCs. Blocking p38 and JNK signal also significantly inhibited the cytokine secretion of TNF-α and IL-12p70 as well, while blocking ERK1/2 signal only decreased the secretion of TNF-α. Meanwhile, DCs in the three MAPK signal-blocking groups showed dramatically attenuated effects on stimulating proliferation of T lymphocytes. Similarly, blocking signal transduction of NF-κB pathway also significantly impaired the phenotypic and functional maturation development of DCs induced by PLP-2. These data suggest that MAPK and NF-κB pathway mediates the PLP-induced maturation on DCs. Especially, among the three MAPK pathways, activation of JNK signal transduction is the most important for DCs development after PLP-2 incubation. And PLP-2 may activate the MAPK and NF-κB pathway by triggering toll-like receptor 4 on DCs.
Collapse
Key Words
- CD, cluster of differentiation
- DCs, dendritic cells
- Dendritic cell
- ERK, extracellular signal regulated kinases
- IL, interleukin
- JNK, c-Jun amino-terminal kinases
- MAPK
- MAPK, mitogen-activated protein kinase
- NF-κB
- NF-κB, nuclear factor κB
- PAMPs, pathogen-associated molecular patterns
- PDTC, pyrrolidine dithiocarbamate
- PLP, polysaccharide from the seeds of Plantago asiatica L.
- PRR, pattern recognition receptors
- Plantago asiatica L.
- Polysaccharides
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Toll-like receptor
Collapse
Affiliation(s)
| | | | | | - MingYong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Liso A, Castellani S, Massenzio F, Trotta R, Pucciarini A, Bigerna B, De Luca P, Zoppoli P, Castiglione F, Palumbo MC, Stracci F, Landriscina M, Specchia G, Bach LA, Conese M, Falini B. Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget 2017; 8:60826-60840. [PMID: 28977828 PMCID: PMC5617388 DOI: 10.18632/oncotarget.18338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Fever plays a role in activating innate immunity while its relevance in activating adaptive immunity is less clear. Even brief exposure to elevated temperatures significantly impacts on the immunostimulatory capacity of dendritic cells (DCs), but the consequences on immune response remain unclear. To address this issue, we analyzed the gene expression profiles of normal human monocyte-derived DCs from nine healthy adults subjected either to fever-like thermal conditions (39°C) or to normal temperature (37°C) for 180 minutes. Exposure of DCs to 39°C caused upregulation of 43 genes and downregulation of 24 genes. Functionally, the up/downregulated genes are involved in post-translational modification, protein folding, cell death and survival, and cellular movement. Notably, when compared to monocytes, DCs differentially upregulated transcription of the secreted protein IGFBP-6, not previously known to be specifically linked to hyperthermia. Exposure of DCs to 39°C induced apoptosis/necrosis and resulted in accumulation of IGFBP-6 in the conditioned medium at 48 h. IGFBP-6 may have a functional role in the hyperthermic response as it induced chemotaxis of monocytes and T lymphocytes, but not of B lymphocytes. Thus, temperature regulates complex biological DC functions that most likely contribute to their ability to induce an efficient adaptive immune response.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Massenzio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosa Trotta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Barbara Bigerna
- Institute of Haematology, University of Perugia, Perugia, Italy
| | | | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia, Catanzaro, Italy
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Rome, Italy
| | | | - Fabrizio Stracci
- Department of Experimental Medicine, Section of Public Health, University of Perugia, Perugia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Leon A Bach
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia.,Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Australia
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
4
|
Zorro Manrique S, Duque Correa MA, Hoelzinger DB, Dominguez AL, Mirza N, Lin HH, Stein-Streilein J, Gordon S, Lustgarten J. Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J Exp Med 2011; 208:1485-99. [PMID: 21670203 PMCID: PMC3135357 DOI: 10.1084/jem.20100730] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 05/10/2011] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (T reg cells) are characterized by the expression of the forkhead lineage-specific transcription factor Foxp3, and their main function is to suppress T cells. While evaluating T reg cells, we identified a population of Foxp3-positive cells that were CD11b(+)F4/80(+)CD68(+), indicating macrophage origin. These cells were observed in spleen, lymph nodes, bone marrow, thymus, liver, and other tissues of naive animals. To characterize this subpopulation of macrophages, we devised a strategy to purify CD11b(+)F4/80(+)Foxp3(+) macrophages using Foxp3-GFP mice. Analysis of CD11b(+)F4/80(+)Foxp3(+) macrophage function indicated that these cells inhibited the proliferation of T cells, whereas Foxp3(-) macrophages did not. Suppression of T cell proliferation was mediated through soluble factors. Foxp3(-) macrophages acquired Foxp3 expression after activation, which conferred inhibitory properties that were indistinguishable from natural Foxp3(+) macrophages. The cytokine and transcriptional profiles of Foxp3(+) macrophages were distinct from those of Foxp3(-) macrophages, indicating that these cells have different biological functions. Functional in vivo analyses indicated that CD11b(+)F4/80(+)Foxp3(+) macrophages are important in tumor promotion and the induction of T reg cell conversion. For the first time, these studies demonstrate the existence of a distinct subpopulation of naturally occurring macrophage regulatory cells in which expression of Foxp3 correlates with suppressive function.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Base Sequence
- CD11b Antigen/metabolism
- Cell Proliferation
- Chemokines/metabolism
- Cytokines/metabolism
- Forkhead Transcription Factors/antagonists & inhibitors
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression Profiling
- Immune Tolerance/physiology
- Macrophage Activation
- Macrophages/classification
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- RNA, Small Interfering/genetics
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Soraya Zorro Manrique
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | | | - Dominique B. Hoelzinger
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Ana Lucia Dominguez
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Noweeda Mirza
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | - Joseph Lustgarten
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
5
|
From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunol Cell Biol 2011; 89:332-9. [PMID: 21301476 DOI: 10.1038/icb.2010.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past 50 years, the practice of vaccination has reached the important goal of reducing many of the diseases that afflicted humanity in past centuries. A better understanding of immunological mechanisms underlying the induction of immune protection and the advent of new technology led to improved vaccine preparations based on purified microbial antigens and new adjuvants able to boost both humoral and cellular immune responses. Despite these tremendous advances, much remains to be done. The emergence of new pathogens, the spread of strains resistant to antibiotics and the enormous increase in latent infections are urgently demanding more and more effective vaccines. Understanding the immunological mechanisms that mediate resistance against infections would certainly provide valuable information for the design of new candidate vaccines.
Collapse
|
6
|
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells with the unique ability of primary immune response initiation. DCs originate from bone marrow progenitors, which circulate in the peripheral blood and subsequently penetrate peripheral tissues, where they give rise to immature DCs. In peripheral tissues, DCs continuously monitor the microenvironment and, when the cells encounter 'danger' signals, DCs undergo differentiation and maturation. Maturing DCs usually migrate to lymphatic tissues, where they form contacts with T cells to initiate a primary immune response. DCs were identified in arteries in 1995 and since then, further knowledge has been gained about the peculiarities of vascular-associated DCs and their role in atherosclerosis. Immune reactions toward modified lipoproteins and other factors ignited by resident vascular DCs as well as by newly arrived DCs, which originate from blood monocytes, are believed to destabilize arterial homeostasis from very earlier stages of atherogenesis. There is a remarkable heterogeneity of DCs in atherosclerotic lesions. Some DCs mature and become capable of forming clusters with T cells directly within the arterial wall. The predictive value of the numbers of circulating DC precursors in coronary artery disease and in atherosclerosis has been assessed, and it has been shown that DCs have a role in plaque destabilization. Over recent decades, DCs have proven to be a valuable instrument in immunotherapy approaches against cancer and various autoimmune diseases, and this explains the demand that the accumulated knowledge be applied to the field of atherosclerosis immunotherapy.
Collapse
|
7
|
Bottasso O, Docena G, Stanford JL, Grange JM. Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products. Inflammopharmacology 2009; 17:193-203. [DOI: 10.1007/s10787-009-0008-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/18/2009] [Indexed: 12/19/2022]
|