1
|
Kheirkhah A, Schachtl-Riess JF, Lamina C, Di Maio S, Koller A, Schönherr S, Coassin S, Forer L, Sekula P, Gieger C, Peters A, Köttgen A, Eckardt KU, Kronenberg F. Meta-GWAS on PCSK9 concentrations reveals associations of novel loci outside the PCSK9 locus in White populations. Atherosclerosis 2023; 386:117384. [PMID: 37989062 DOI: 10.1016/j.atherosclerosis.2023.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of lipid homeostasis. A few earlier genome-wide association studies (GWAS) investigated genetic variants associated with circulating PCSK9 concentrations. However, uncertainty remains about some of the genetic loci discovered beyond the PCSK9 locus. By conducting the largest PCSK9 meta-analysis of GWAS (meta-GWAS) so far, we aimed to identify novel loci and validate the previously reported loci that regulate PCSK9 concentrations. METHODS We performed GWAS for PCSK9 concentrations in two large cohorts (GCKD (n = 4,963) and KORA F3 (n = 2,895)). These were meta-analyzed with previously published data encompassing together 20,579 individuals. We further conducted a second meta-analysis in statin-naïve individuals (n = 15,390). A genetic risk score (GRS) was constructed on PCSK9-increasing SNPs and assessed its impact on the risk for coronary artery disease (CAD) in 394,943 statin-naïve participants (17,077 with events) of the UK Biobank by performing CAD-free survival analysis. RESULTS Nine loci were genome-wide significantly associated with PCSK9 concentrations. These included the previously described PCSK9, APOB, KCNA1/KCNA5, and TM6SF2/SUGP1 loci. All imputed SNPs in the PCSK9 locus account for ∼15% of variance of PCSK9 concentrations. We further identified FADS2 as a novel locus that was also found in statin-naïve participants. All imputed SNPs within the FADS2 locus explain ∼1.2% of variance of PCSK9 concentrations. Additionally, four further loci (a region on chromosome 5, SDK1, SPATA16 and HPR) were genome-wide significant in either the main model or the statin-naïve subset. The linear increase in a PCSK9 genetic risk score was associated with 1.41-fold (95%CI 1.16-1.72, p < 0.001) higher risk for incident CAD. CONCLUSIONS We identified five novel loci (FADS2, SPATA16, SDK1, HPR and a region on chromosome 5) for PCSK9 concentrations that would require further research. Additionally, we confirm the genome-wide significant loci that were previously detected.
Collapse
Affiliation(s)
- Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Chronic Kidney Disease Study, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Goyal R, Singhal PC. APOL1 risk variants and the development of HIV-associated nephropathy. FEBS J 2020; 288:5586-5597. [PMID: 33340240 DOI: 10.1111/febs.15677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023]
Abstract
HIV-associated nephropathy (HIVAN) remains a concern among untreated HIV patients, notably of African descent, as patients can reach end-stage renal disease within 3 years. Two variants (G1 and G2) of the APOL1 gene, common in African populations to protect against African sleeping sickness, have been associated with an increased risk of several glomerular disorders including HIVAN, hypertension-attributed chronic kidney disease, and idiopathic focal segmental glomerulosclerosis and are accordingly named renal risk variants (RRVs). This review examines the mechanisms by which APOL1 RRVs drive glomerular injury in the setting of HIV infection and their potential application to patient management. Innate antiviral mechanisms activated by chronic HIV infection, especially those involving type 1 interferons, are of particular interest as they have been shown to upregulate APOL1 expression. Additionally, the downregulation of miRNA 193a (a repressor of APOL1) is also associated with the upregulation of APOL1. Interestingly, glomerular damage affected by APOL1 RRVs is caused by both loss- and gain-of-function changes in the protein, explicitly characterizing these effects. Their intracellular localization offers a further understanding of the nuances of APOL1 variant effects in promoting renal disease. Finally, although APOL1 variants have been recognized as a critical genetic player in mediating kidney disease, there are significant gaps in their application to patient management for screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Rohan Goyal
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, Manhasset, NY, USA
| |
Collapse
|
3
|
Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO. In vitro and in vivo antitrypanosomal efficacy of combination therapy of Anogeissus leiocarpus, Khaya senegalensis and potash. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112805. [PMID: 32243988 DOI: 10.1016/j.jep.2020.112805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pastoralists in Nigeria mix barks of Anogeissus leiocarpus (AL) Khaya senegalensis (KS) and potash (Pt) to treat animal African trypanosomosis. AIM To evaluate antitrypanosomal potential of A. leiocarpus, K. senegalensis and potash for insights into the traditional claim of antitrypanosomal combination therapy (ATCT). MATERIALS AND METHODS Fifty microliter each of six different concentrations of AL, KS, Pt, AL + KS, AL + KS + Pt and diminazene aceturate (DA, positive control) was incubated with 50 μL of parasite-laden blood containing 108Trypanosoma congolense cells in a 96-well microtitre plate. Negative control wells were devoid of the extracts and drug but supplemented with phosphate-buffered saline (PBS). Efficacy of treatment was observed at 1 h interval for complete immobilisation or reduced motility of the parasites. Each incubated mixture was inoculated into mouse at the point of complete immobilisation of parasite motility or at the end of 6-h observation period for concentrations that did not immobilise the parasites completely. For in vivo assessment, thirty-five parasitaemic rats were randomly allocated into seven groups of 5 rats each. Each rat in groups I-V was treated with 500 mg/kg of AL, KS, Pt, AL + KS and AL + KS + Pt, respectively, for 7 days. Rats in groups VI and VII were treated with diminazene aceturate 3.5 mg/kg once and PBS 2 mL/kg (7 days), which served as positive and negative controls, respectively. Daily monitoring of parasitaemia through the tail vein, packed cell volume and malondialdehyde were used to assess efficacy of the treatments. RESULTS The AL + KS + Pt group significantly (p < 0.05) and dose-dependently reduced parasite motility and completely immobilized the parasites at 10, 5 and 2.5 μg/μL with an IC50 of 9.1×10-4 µg/µL. All the mice with conditions that produced complete cessation of parasite motility did not develop parasitaemia within one month of observation. The AL + KS group significantly (p < 0.05) lowered the level of parasitaemia and MDA, and significantly (p < 0.05) maintained higher PCV than PBS group. CONCLUSION The combination of A. leiocarpus and K. senegalensis showed better antitrypanosomal effects than single drug treatment and offers prospects for ATCT. Our findings support ethnopharmacological use of combined barks of A. leiocarpus and K. senegalensis by pastoralist in the treatment of animal African trypanosomosis in Nigeria.
Collapse
Affiliation(s)
- Abdullah M Tauheed
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Mohammed Mamman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abubakar Ahmed
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed M Suleiman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; College of Agriculture and Animal Science, Mando, Ahmadu Bello University, Kaduna State, Nigeria
| | - Emmanuel O Balogun
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; School of Pharmaceutical Sciences, University of California San Diego, United States of America
| |
Collapse
|
4
|
Abstract
Genetic variants in the APOL1 gene, found only in individuals of recent African ancestry, greatly increase risk of multiple types of kidney disease. These APOL1 kidney risk alleles are a rare example of genetic variants that are common but also have a powerful effect on disease susceptibility. These alleles rose to high frequency in sub-Saharan Africa because they conferred protection against pathogenic trypanosomes that cause African sleeping sickness. We consider the genetic evidence supporting the association between APOL1 and kidney disease across the range of clinical phenotypes in the APOL1 nephropathy spectrum. We then explore the origins of the APOL1 risk variants and evolutionary struggle between humans and trypanosomes at both the molecular and population genetic level. Finally, we survey the rapidly growing literature investigating APOL1 biology as elucidated from experiments in cell-based systems, cell-free systems, mouse and lower organism models of disease, and through illuminating natural experiments in humans.
Collapse
Affiliation(s)
- David J Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| |
Collapse
|
5
|
Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Exp Parasitol 2018; 195:24-33. [DOI: 10.1016/j.exppara.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 01/30/2023]
|
6
|
A polymorphism in the haptoglobin, haptoglobin related protein locus is associated with risk of human sleeping sickness within Cameroonian populations. PLoS Negl Trop Dis 2017; 11:e0005979. [PMID: 29077717 PMCID: PMC5697879 DOI: 10.1371/journal.pntd.0005979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/21/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022] Open
Abstract
Background Human African Trypanosomiasis (HAT) is a neglected disease targeted for elimination as a public health problem by 2020. Elimination requires a better understanding of the epidemiology and clinical evolution of HAT. In addition to the classical clinical evolution of HAT, asymptomatic carriers and spontaneous cure have been reported in West Africa. A genetic component to human susceptibility to HAT has been suggested to explain these newly observed responses to infection. In order to test for genetic associations with infection response, genetic polymorphism in 17 genes were tested (APOL1, IL1B, IL4, IL4R, IL6, IL8, IL12B, IL12RB1, IL10, TNFA, INFG, MIF, HLA-G, HLA-A, HP, HPR and CFH). Methodology A case-control study was performed on 180 blood samples collected from 56 cases and 124 controls from Cameroon. DNA was extracted from blood samples. After quality control, 25 samples (24 controls and 1 case) were eliminated. The genotyping undertaken on 155 individuals including 55 cases and 100 controls were investigated at 96 loci (88 SNPs and 8 indels) located on 17 genes. Associations between these loci and HAT were estimated via a case-control association test. Results Analyses of 64 SNPs and 4 indels out of 96 identified in the selected genes reveal that the minor allele (T) of rs8062041 in haptoglobin (HP) appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204–0.6319])); indicating higher frequency in cases compared to controls. This minor allele with adjusted p value of 0.0163 is associated with a lower risk (protective effect) of developing sleeping sickness. Conclusion The haptoglobin related protein HPR and HP are tightly linked and both are duplicated in some people and may lead to higher activity. This increased production could be responsible of the protection associated with rs8062041 even though this SNP is within HP. Human African trypanosomiasis (HAT) or sleeping sickness is a neglected tropical disease targeted for elimination by 2020. This elimination requires a better understanding of the epidemiology and clinical evolution of this disease. Beside the classical clinical evolution, asymptomatic carriers, seropositive and spontaneous cure of infected persons have been reported in West Africa. Arguments in favor of human genetic susceptibility to HAT have been raised to explain this variability in clinical presentation. This study investigated the genetic polymorphism of 17 genes between controls and sleeping sickness patients in Southern Cameroon in order to improve our knowledge of human susceptibility to trypanosome infections. We identified single nucleotide polymorphisms and indels in 17 selected genes involved in immune responses and carried out a case-control candidate gene association study and demonstrated differences between variants associated with the disease. From these genes, only haptoglobin (HP) at the SNP rs8062041 was found to have polymorphisms which were strongly associated with trypanosomiasis. The minor allele (T) at this SNP position appeared to be protective against HAT (p = 0.0002395, OR 0.359 (CI95 [0.204–0.6319])) reducing the risk of developing disease approximately threefold. The haptoglobin related protein (HPR) is adjacent to HP and is a component of the Trypanolytic factor that kills trypanosomes. The HP and HPR locus is duplicated in some people. The rs8062041 variant may be associated with this duplication and it is possible that increased production of HPR is the cause of the protection associated with rs8062041. The results reported here will contribute to the knowledge of the role of human genetics in disease progression, and thus lead to the identification of novel biomarkers which could involve development of new diagnostics, treatments and intervention strategies.
Collapse
|
7
|
Bruno J, Pozzi N, Oliva J, Edwards JC. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles. J Biol Chem 2017; 292:18344-18353. [PMID: 28918394 DOI: 10.1074/jbc.m117.813444] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo, we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments.
Collapse
Affiliation(s)
| | - Nicola Pozzi
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63110
| | - Jonathan Oliva
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63110
| | | |
Collapse
|
8
|
Waema M, Maina N, Karanja S, Gachie B, Ngotho M, Kagira J. Development of a safer laboratory vervet monkey model for the study of human African trypanosomiasis. Afr J Lab Med 2014; 3:100. [PMID: 29043174 PMCID: PMC5637759 DOI: 10.4102/ajlm.v3i1.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022] Open
Abstract
Background There are three subspecies of Trypanosoma brucei: T. b. gambiense, T. b. rhodesiense and T. b. brucei. The first two are infectious to humans, whilst T. b. brucei is not. Identifying an animal model of T. b. brucei that mimics human African trypanosomiasis (HAT) would enable researchers to study HAT without subjecting themselves to undue risks such as accidental infection. Objectives This study assessed the sequential clinical, parasitological and haematological changes in vervet monkeys infected with T. b. brucei. Methods Three vervet monkeys were infected with a 104 inoculum of T. b. brucei (isolate GUTat 1). Late-stage disease was induced by subcurative treatment with diminazene aceturate 28 days post-infection. The animals were treated curatively with melarsoprol upon relapse. Parasitaemia and clinical signs were monitored daily and, at weekly intervals, the monkeys’ blood and cerebrospinal fluid (CSF) were sampled for haematology and parasitosis assessments, respectively. Results The first-peak parasitaemia was observed between seven and nine days post-infection. Clinical signs associated with the disease included fever, dullness, pallor of mucous membranes, lymphadenopathy, splenomegaly and oedema. Late-stage signs included stiffness of joints and lethargy. The monkeys developed a disease associated with microcytic hypochromic anaemia. There was an initial decline, followed by an increase, in total white blood cell counts from early- to late-stage disease. Trypanosomes were detected in the CSF and there was a significant increase in white cell counts in the CSF during late-stage disease. Infected vervet monkeys displayed classical clinical symptoms, parasitological and haematological trends that were similar to monkeys infected with T.b. rhodesiense. Conclusion The T. b. brucei vervet monkey model can be used for studying HAT without putting laboratory technicians and researchers at high risk of accidental infection.
Collapse
Affiliation(s)
- Maxwell Waema
- Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Naomi Maina
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Simon Karanja
- Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Beatrice Gachie
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Maina Ngotho
- Animal Science Department, Institute of Primate Research, Kenya
| | - John Kagira
- Department of Land Resources Planning Management, Jomo Kenyatta University of Agriculture and Technology, Kenya
| |
Collapse
|
9
|
Desquesnes M, Dargantes A, Lai DH, Lun ZR, Holzmuller P, Jittapalapong S. Trypanosoma evansi and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. BIOMED RESEARCH INTERNATIONAL 2013; 2013:321237. [PMID: 24151595 PMCID: PMC3789323 DOI: 10.1155/2013/321237] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022]
Abstract
This paper reviews the transmission modes of Trypanosoma evansi. Its worldwide distribution is attributed to mechanical transmission. While the role of tabanids is clear, we raise questions on the relative role of Haematobia sp. and the possible role of Stomoxys sp. in delayed transmission. A review of the available trypanocidal drugs and their efficacy in various host species is useful for understanding how they interact in disease epidemiology, which is complex. Although there are similarities with other mechanically transmitted trypanosomes, T. evansi has a more complex epidemiology due to the diversity of its hosts and vectors. The impact of clinical and subclinical disease is difficult to establish. A model was developed for buffaloes in the Philippines, which could be transferred to other places and livestock systems. Since Trypanosoma evansi was reported in humans, further research is required to investigate its zoonotic potential. Surra remains a potentially emerging disease that is a threat to Australia, Spain, and France. A number of questions about the disease have yet to be resolved. This brief review of the basic knowledge of T. evansi suggests that there is renewed interest in the parasite, which is spreading and has a major economic impact.
Collapse
Affiliation(s)
- Marc Desquesnes
- CIRAD, UMR-InterTryp, 34398 Montpellier, France
- Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Alan Dargantes
- College of Veterinary Medicine, Central Mindanao University, Mindanao, University Town, Musuan, Maramag, Philippines
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | |
Collapse
|
10
|
Abstract
The two classical forms of human trypanosomoses are sleeping sickness due to Trypanosoma brucei gambiense or T. brucei rhodesiense, and Chagas disease due to T. cruzi. However, a number of atypical human infections caused by other T. species (or sub-species) have been reported, namely due to T. brucei brucei, T. vivax, T. congolense, T. evansi, T. lewisi, and T. lewisi-like. These cases are reviewed here. Some infections were transient in nature, while others required treatments that were successful in most cases, although two cases were fatal. A recent case of infection due to T. evansi was related to a lack of apolipoprotein L-I, but T. lewisi infections were not related to immunosuppression or specific human genetic profiles. Out of 19 patients, eight were confirmed between 1974 and 2010, thanks to improved molecular techniques. However, the number of cases of atypical human trypanosomoses might be underestimated. Thus, improvement, evaluation of new diagnostic tests, and field investigations are required for detection and confirmation of these atypical cases.
Collapse
|
11
|
Costa MM, Dos Anjos Lopes ST, França RT, da Silva AS, Paim FC, Palma HE, Maciel RM, Dornelles GL, de Azevedo MI, Tonin AA, Santurio JM, Duarte MMMF, Monteiro SG. Role of acute phase proteins in the immune response of rabbits infected with Trypanosoma evansi. Res Vet Sci 2013; 95:182-8. [PMID: 23462620 DOI: 10.1016/j.rvsc.2013.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/04/2013] [Accepted: 01/25/2013] [Indexed: 12/01/2022]
Abstract
The aim of this study was to characterize the response of acute phase proteins (APP) in rabbits experimentally infected with Trypanosoma evansi (T. evansi), and to relate the findings with serum immunoglobulins levels, in order to verify the relation between APP and the immune response of rabbits. A total of 12 animals were used in this experiment and divided into 2 groups, control and infected, of six rabbits each. The experimental period was 118 days, and blood was collected on days 0, 5, 20, 35, 65, 95 and 118 post-infection (PI). The infection with T. evansi stimulated APP and immunoglobulins production, once the infected animals showed an increase in C-reactive protein, haptoglobin, alpha 2-macroglobulin and IgM levels. The elevation in IgM levels observed in this study, when related to the increase in C-reactive protein and haptoglobin levels, suggests the involvement of these proteins in host defense against flagellated protozoa, with possible participation in the control of the parasitemia in rabbits infected with T. evansi.
Collapse
Affiliation(s)
- Márcio Machado Costa
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
APOL1 expression is induced by Trypanosoma brucei gambiense infection but is not associated with differential susceptibility to sleeping sickness. INFECTION GENETICS AND EVOLUTION 2012; 12:1519-23. [DOI: 10.1016/j.meegid.2012.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/22/2022]
|
13
|
Da Silva AS, Duck MRK, Fanfa VDR, Otto MA, Nunes JTS, Tonin AA, Jaques JA, Paim FC, Duarte MMMF, Monteiro SG. Trypanocidal activity of human plasma on Trypanosoma evansi in mice. ACTA ACUST UNITED AC 2012; 21:55-9. [PMID: 22534946 DOI: 10.1590/s1984-29612012000100011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/21/2012] [Indexed: 11/21/2022]
Abstract
This study aimed to test an alternative protocol with human plasma to control Trypanosoma evansi infection in mice. Plasma from an apparently 27-year-old healthy male, blood type A+, was used in the study. A concentration of 100 mg.dL(-1) apolipoprotein L1 (APOL1) was detected in the plasma. Forty mice were divided into four groups with 10 animals each. Group A comprised uninfected animals. Mice from groups B, C and D were inoculated with a T. evansi isolate. Group B was used as a positive control. At three days post-infection (DPI), the mice were administered intraperitoneally with human plasma. A single dose of 0.2 mL plasma was given to those in group C. The mice from group D were administered five doses of 0.2 mL plasma with a 24 hours interval between the doses. Group B showed high increasing parasitemia that led to their death within 5 DPI. Both treatments eliminated parasites from the blood and increased the longevity of animals. An efficacy of 50 (group C) and 80% (group D) of human plasma trypanocidal activity was found using PCR. This therapeutic success was likely achieved in the group D due to their higher levels of APOL1 compared with group C.
Collapse
Affiliation(s)
- Aleksandro Schafer Da Silva
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria-UFSM, Prédio 20, Sala 4232, Campus Universitário, Camobi, CEP 97105-900, Santa Maria, RS, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW We review recent work on the genetic basis of kidney disease in African Americans and its relationship to variation in the APOL1 gene. RECENT FINDINGS People of recent African ancestry develop kidney disease at rates 4-5 times higher than most other groups. This observation holds for kidney disease attributed to hypertension, as well as focal segmental glomerulosclerosis (FSGS), and HIV-associated nephropathy (HIVAN). Recent work suggests that the high risk for all of these forms of kidney disease in African Americans is conferred by the same genetic risk factors, specifically two coding sequence variants in the APOL1 gene. SUMMARY Future studies aimed at understanding the clinical implications of APOL1 genotype in the setting of HIV infection, proteinuria, and hypertension-associated kidney disease will help clarify how these recent findings should influence a nephrologist's decisions about patient care. Studies exploring the cellular and molecular mechanisms of APOL1-associated disease may lead to new methods of treatment.
Collapse
|
15
|
Creek DJ, Anderson J, McConville MJ, Barrett MP. Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 2011; 181:73-84. [PMID: 22027026 DOI: 10.1016/j.molbiopara.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/05/2023]
Abstract
Metabolomics aims to measure all low molecular weight chemicals within a given system in a manner analogous to transcriptomics, proteomics and genomics. In this review we highlight metabolomics approaches that are currently being applied to the kinetoplastid parasites, Trypanosoma brucei and Leishmania spp. The use of untargeted metabolomics approaches, made possible through advances in mass spectrometry and informatics, and stable isotope labelling has increased our understanding of the metabolism in these organisms beyond the views established using classical biochemical approaches. Set within the context of metabolic networks, predicted using genome-wide reconstructions of metabolism, new hypotheses on how to target aspects of metabolism to design new drugs against these protozoa are emerging.
Collapse
Affiliation(s)
- Darren J Creek
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
16
|
Gadelha C, Holden JM, Allison HC, Field MC. Specializations in a successful parasite: what makes the bloodstream-form African trypanosome so deadly? Mol Biochem Parasitol 2011; 179:51-8. [PMID: 21763356 DOI: 10.1016/j.molbiopara.2011.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Most trypanosomatid parasites have both arthropod and mammalian or plant hosts, and the ability to survive and complete a developmental program in each of these very different environments is essential for life cycle progression and hence being a successful pathogen. For African trypanosomes, where the mammalian stage is exclusively extracellular, this presents specific challenges and requires evasion of both the acquired and innate immune systems, together with adaptation to a specific nutritional environment and resistance to mechanical and biochemical stresses. Here we consider the basis for these adaptations, the specific features of the mammalian infective trypanosome that are required to meet these challenges, and how these processes both inform on basic parasite biology and present potential therapeutic targets.
Collapse
|
17
|
Zucca M, Savoia D. Current developments in the therapy of protozoan infections. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:4-10. [PMID: 21629507 PMCID: PMC3103884 DOI: 10.2174/1874104501105010004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/25/2010] [Accepted: 06/20/2010] [Indexed: 12/03/2022]
Abstract
Protozoan parasites cause serious human and zoonotic infections, including life-threatening diseases such as malaria, African and American trypanosomiasis, and leishmaniasis. These diseases are no more common in the developed world, but together they still threaten about 40% of the world population (WHO estimates). Mortality and morbidity are high in developing countries, and the lack of vaccines makes chemotherapy the only suitable option. However, available antiparasitic drugs are hampered by more or less marked toxic side effects and by the emergence of drug resistance. As the main prevalence of parasitic diseases occurs in the poorest areas of the world, the interest of the pharmaceutical companies in the development of new drugs has been traditionally scarce. The establishment of public-private partnerships focused on tropical diseases is changing this situation, allowing the exploitation of the technological advances that took place during the past decade related to genomics, proteomics, and in silico drug discovery approaches. These techniques allowed the identification of new molecular targets that in some cases are shared by different parasites. In this review we outline the recent developments in the fields of protease and topoisomerase inhibitors, antimicrobial and cell-penetrating peptides, and RNA interference. We also report on the rapidly developing field of new vectors (micro and nano particles, mesoporous materials) that in some cases can cross host or parasite natural barriers and, by selectively delivering new or already in use drugs to the target site, minimize dosage and side effects.
Collapse
Affiliation(s)
- Mario Zucca
- Department of Clinical and Biological Sciences, University of Torino, Italy
| | | |
Collapse
|
18
|
Barratt JLN, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev 2010; 23:795-836. [PMID: 20930074 PMCID: PMC2952979 DOI: 10.1128/cmr.00001-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There are many neglected nonenteric protozoa able to cause serious morbidity and mortality in humans, particularly in the developing world. Diseases caused by certain protozoa are often more severe in the presence of HIV. While information regarding neglected tropical diseases caused by trypanosomatids and Plasmodium is abundant, these protozoa are often not a first consideration in Western countries where they are not endemic. As such, diagnostics may not be available in these regions. Due to global travel and immigration, this has become an increasing problem. Inversely, in certain parts of the world (particularly sub-Saharan Africa), the HIV problem is so severe that diseases like microsporidiosis and toxoplasmosis are common. In Western countries, due to the availability of highly active antiretroviral therapy (HAART), these diseases are infrequently encountered. While free-living amoebae are rarely encountered in a clinical setting, when infections do occur, they are often fatal. Rapid diagnosis and treatment are essential to the survival of patients infected with these organisms. This paper reviews information on the diagnosis and treatment of nonenteric protozoal diseases in immunocompromised people, with a focus on patients infected with HIV. The nonenteric microsporidia, some trypanosomatids, Toxoplasma spp., Neospora spp., some free-living amoebae, Plasmodium spp., and Babesia spp. are discussed.
Collapse
Affiliation(s)
- J L N Barratt
- Department of Microbiology, St. Vincent's Hospital, Darlinghurst 2010, NSW, Australia.
| | | | | | | | | |
Collapse
|
19
|
Wheeler RJ. The trypanolytic factor-mechanism, impacts and applications. Trends Parasitol 2010; 26:457-64. [PMID: 20646962 DOI: 10.1016/j.pt.2010.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
The Trypanosoma brucei subspecies T. brucei brucei is non-human infective due to susceptibility to lysis by trypanolytic factor (TLF) in human serum. Reviewed here are the advances which have revealed apolipoprotein L1 (ApoL1), found in high density lipoprotein, as the lysis-inducing component of TLF, the means of uptake via haptoglobin-related protein receptor and the mechanism of resistance in T. b. rhodesiense via its serum resistance-associated (SRA) protein. The first practical steps to application of these discoveries are now in progress; transgenic animals expressing either baboon or minimally truncated human ApoL1 show resistance to both T. b. brucei and T. b. rhodesiense. This has major implications for treatment and prevention of human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
20
|
Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, Chukualim B, Capewell P, MacLeod A, Melville SE, Gibson W, Barry JD, Berriman M, Hertz-Fowler C. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 2010; 4:e658. [PMID: 20404998 PMCID: PMC2854126 DOI: 10.1371/journal.pntd.0000658] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Trypanosoma brucei gambiense is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a T. b. brucei isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between T. b. gambiense and the reference genome. We sought to identify features that were uniquely associated with T. b. gambiense and its ability to infect humans. Methods and Findings An improved high-quality draft genome sequence for the group 1 T. b. gambiense DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with T. b. brucei showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in T. b. gambiense DAL 972. A comparison of the variant surface glycoproteins (VSG) in T. b. brucei with all T. b. gambiense sequence reads showed that the essential structural repertoire of VSG domains is conserved across T. brucei. Conclusions This study provides the first estimate of intraspecific genomic variation within T. brucei, and so has important consequences for future population genomics studies. We have shown that the T. b. gambiense genome corresponds closely with the reference, which should therefore be an effective scaffold for any T. brucei genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in T. b. brucei, no T. b. gambiense-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans. Sleeping sickness, or Human African Trypanosomiasis, is a disease affecting the health and productivity of poor people in many rural areas of sub-Saharan Africa. The disease is caused by a single-celled flagellate, Trypanosoma brucei, which evades the immune system by periodically switching the proteins on its surface. We have produced a genome sequence for T. brucei gambiense, which is the particular subspecies causing most disease in humans. We compared this with an existing reference genome for a non-human infecting strain (T. b. brucei 927) to identify genes in T. b. gambiense that might explain its ability to infect humans and to assess how well the reference performs as a universal plan for all T. brucei. The genome sequences differ only due to rare insertions and duplications and homologous genes are over 95% identical on average. The archive of surface antigens that enable the parasite to switch its protein coat is remarkably consistent, even though it evolves very quickly. We identified genes with predicted cell surface functions that are only present in T. b. brucei and have evolved rapidly in recent time. These genes might help to explain variation in disease pathology between different T. brucei strains in different hosts.
Collapse
Affiliation(s)
- Andrew P. Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Andrew Berry
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jacqueline McQuillan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Martin A. Aslett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Paul Capewell
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - J. David Barry
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Christiane Hertz-Fowler
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Abstract
With the evolution of fish, systems appeared for the disposal of the hemoglobin (Hb) that was inevitably released from erythrocytes. Thus, a plasma protein that bound free Hb with great affinity, haptoglobin (Hp), evolved from a protease of the innate immune system. In parallel, other proteins appeared (for example, hemopexin and alpha(1)-microglobulin), which bound and mediated the removal of free heme groups. Remarkably, Hp later disappeared in some vertebrate lineages, suggesting that it could also be disadvantageous. In the avian lineage, a soluble protein evolved, possibly from a scavenger receptor, which in some birds seems to have replaced Hp. Among mammals, multimeric forms of Hp appeared independently at two discrete times, suggesting that this form of the protein confers an advantage on the bearer, possibly by improving resistance to infection.
Collapse
|
22
|
Susceptibility of Trypanosoma evansi to human blood and plasma in infected mice. Vet Parasitol 2010; 168:1-4. [DOI: 10.1016/j.vetpar.2009.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
|
23
|
Magez S, Radwanska M. African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiol 2010; 4:1075-87. [PMID: 19824795 DOI: 10.2217/fmb.09.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
African trypanosomiasis causes devastating effects on human populations and livestock herds in large parts of sub-Saharan Africa. Control of the disease is hampered by the lack of any efficient vaccination results in a field setting, and the severe side effects of current drug therapies. In addition, with the exception of Trypanosoma brucei gambiense infections, the diagnosis of trypanosomiasis has to rely on microscopic analysis of blood samples, as other specific tools are nonexistent. However, new developments in biotechnology, which include loop-mediated isothermal amplification as an adaptation to conventional PCR, as well as the antibody engineering that has allowed the development of Nanobody technology, offer new perspectives in both the detection and treatment of trypanosomiasis. In addition, recent data on parasite-induced B-cell memory destruction offer new insights into mechanisms of vaccine failure, and should lead us towards new strategies to overcome trypanosome defenses operating against the host immune system.
Collapse
Affiliation(s)
- Stefan Magez
- Department of Molecular & Cellular Interactions, Flanders Institute for Biotechnology, Rijvisschestraat 120, B-9052 Ghent, Belgium.
| | | |
Collapse
|
24
|
Thomson R, Samanovic M, Raper J. Activity of trypanosome lytic factor: a novel component of innate immunity. Future Microbiol 2009; 4:789-96. [PMID: 19722834 DOI: 10.2217/fmb.09.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Trypanosome lytic factors (TLFs) are high-density lipoproteins and components of primate innate immunity. TLFs are characterized by their ability to kill extracellular protozoon parasites of the genus Trypanosoma. Two subspecies of Trypanosoma brucei have evolved resistance to TLFs and can consequently infect humans, resulting in the disease African sleeping sickness. The unique protein components of TLFs are a hemoglobin-binding protein, haptoglobin-related protein and a pore-forming protein, apoL-I. The recent advances in our understanding of the roles that these proteins play in the mechanism of TLF-mediated lysis are highlighted in this article. In light of recent data, which demonstrate that TLFs can ameliorate infection by the intracellular pathogen Leishmania, we also discuss the broader function of TLFs as components of innate immunity.
Collapse
Affiliation(s)
- Russell Thomson
- Medical Parasitology, New York University Langone Medical Center, 341 East 25th Street, New York, NY 10010, USA.
| | | | | |
Collapse
|
25
|
Bosschaerts T, Guilliams M, Stijlemans B, De Baetselier P, Beschin A. Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology 2009; 214:737-47. [PMID: 19577324 DOI: 10.1016/j.imbio.2009.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uncontrolled inflammation is a major cause of pathogenicity during chronic parasite infections. Novel therapies should therefore aim at re-establishing the balance between pro- and anti-inflammatory signals during disease to avoid tissue damage and ensure survival of the host. In this context, we are intending to identify strategies capable of inducing counter-inflammatory activity in injured liver and thereby increasing the resistance of the host to African trypanosomiasis as a model for parasite infection. Here, recent evidence is summarized revealing how monocytic cells recruited to the liver of African trypanosome-infected mice develop an M1 or M2 activation status, thereby maintaining the capacity of the host to control parasite growth while avoiding the development of liver damage, which otherwise culminates in early death of the host.
Collapse
Affiliation(s)
- Tom Bosschaerts
- Department of Molecular and Cellular Interactions, VIB, Brussel, Belgium
| | | | | | | | | |
Collapse
|
26
|
Helm JR, Hertz-Fowler C, Aslett M, Berriman M, Sanders M, Quail MA, Soares MB, Bonaldo MF, Sakurai T, Inoue N, Donelson JE. Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense. Mol Biochem Parasitol 2009; 168:34-42. [PMID: 19559733 DOI: 10.1016/j.molbiopara.2009.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
Trypanosoma congolense is one of the most economically important pathogens of livestock in Africa. Culture-derived parasites of each of the three main insect stages of the T. congolense life cycle, i.e., the procyclic, epimastigote and metacyclic stages, and bloodstream stage parasites isolated from infected mice, were used to construct stage-specific cDNA libraries and expressed sequence tags (ESTs or cDNA clones) in each library were sequenced. Thirteen EST clusters encoding different variant surface glycoproteins (VSGs) were detected in the metacyclic library and 26 VSG EST clusters were found in the bloodstream library, 6 of which are shared by the metacyclic library. Rare VSG ESTs are present in the epimastigote library, and none were detected in the procyclic library. ESTs encoding enzymes that catalyze oxidative phosphorylation and amino acid metabolism are about twice as abundant in the procyclic and epimastigote stages as in the metacyclic and bloodstream stages. In contrast, ESTs encoding enzymes involved in glycolysis, the citric acid cycle and nucleotide metabolism are about the same in all four developmental stages. Cysteine proteases, kinases and phosphatases are the most abundant enzyme groups represented by the ESTs. All four libraries contain T. congolense-specific expressed sequences not present in the Trypanosoma brucei and Trypanosoma cruzi genomes. Normalized cDNA libraries were constructed from the metacyclic and bloodstream stages, and found to be further enriched for T. congolense-specific ESTs. Given that cultured T. congolense offers an experimental advantage over other African trypanosome species, these ESTs provide a basis for further investigation of the molecular properties of these four developmental stages, especially the epimastigote and metacyclic stages for which it is difficult to obtain large quantities of organisms. The T. congolense EST databases are available at: http://www.sanger.ac.uk/Projects/T_congolense/EST_index.shtml. The sequence data have been submitted to EMBL under the following accession numbers: FN263376-FN292969.
Collapse
Affiliation(s)
- Jared R Helm
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|