1
|
Paauw A, Scholz HC, Mars-Groenendijk RH, Dekker LJM, Luider TM, van Leeuwen HC. Expression of virulence and antimicrobial related proteins in Burkholderia mallei and Burkholderia pseudomallei. PLoS Negl Trop Dis 2023; 17:e0011006. [PMID: 36607891 PMCID: PMC9821509 DOI: 10.1371/journal.pntd.0011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are both potential biological threat agents. Melioidosis caused by B. pseudomallei is endemic in Southeast Asia and Northern Australia, while glanders caused by B. mallei infections are rare. Here we studied the proteomes of different B. mallei and B. pseudomallei isolates to determine species specific characteristics. METHODS The expressed proteins of 5 B. mallei and 6 B. pseudomallei strains were characterized using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Subsequently, expression of potential resistance and virulence related characteristics were analyzed and compared. RESULTS Proteome analysis can be used for the identification of B. mallei and B. pseudomallei. Both species were identified based on >60 discriminative peptides. Expression of proteins potentially involved in antimicrobial resistance, AmrAB-OprA, BpeAB-OprB, BpeEF-OprC, PenA as well as several other efflux pump related proteins and putative β-lactamases was demonstrated. Despite, the fact that efflux pump BpeAB-OprB was expressed in all isolates, no clear correlation with an antimicrobial phenotype and the efflux-pump could be established. Also consistent with the phenotypes, no amino acid mutations in PenA known to result in β-lactam resistance could be identified. In all studied isolates, the expression of virulence (related) factors Capsule-1 and T2SS was demonstrated. The expression of T6SS-1 was demonstrated in all 6 B. pseudomallei isolates and in 2 of the 5 B. mallei isolates. In all, except one B. pseudomallei isolate, poly-beta-1,6 N-acetyl-D-glucosamine export porin (Pga), important for biofilm formation, was detected, which were absent in the proteomes of B. mallei. Siderophores, iron binding proteins, malleobactin and malleilactone are possibly expressed in both species under standard laboratory growth conditions. Expression of multiple proteins from both the malleobactin and malleilactone polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters was demonstrated in both species. All B. pseudomallei expressed at least seven of the nine proteins of the bactobolin synthase cluster (bactobolin, is a ribosome targeting antibiotic), while only in one B. mallei isolate expression of two proteins of this synthase cluster was identified. CONCLUSIONS Analyzing the expressed proteomes revealed differences between B. mallei and B. pseudomallei but also between isolates from the same species. Proteome analysis can be used not only to identify B. mallei and B. pseudomallei but also to characterize the presence of important factors that putatively contribute to the pathogenesis of B. mallei and B. pseudomallei.
Collapse
Affiliation(s)
- Armand Paauw
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| | - Holger C. Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Roos H. Mars-Groenendijk
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| | | | - Theo M. Luider
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Hans C. van Leeuwen
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| |
Collapse
|
2
|
DeShazer D, Lovett S, Richardson J, Koroleva G, Kuehl K, Amemiya K, Sun M, Worsham P, Welkos S. Bacteriophage-associated genes responsible for the widely divergent phenotypes of variants of Burkholderia pseudomallei strain MSHR5848. J Med Microbiol 2019; 68:263-278. [PMID: 30628877 DOI: 10.1099/jmm.0.000908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Burkholderia pseudomallei, the tier 1 agent of melioidosis, is a saprophytic microbe that causes endemic infections in tropical regions such as South-East Asia and Northern Australia. It is globally distributed, challenging to diagnose and treat, infectious by several routes including inhalation, and has potential for adversarial use. B. pseudomallei strain MSHR5848 produces two colony variants, smooth (S) and rough (R), which exhibit a divergent range of morphological, biochemical and metabolic phenotypes, and differ in macrophage and animal infectivity. We aimed to characterize two major phenotypic differences, analyse gene expression and study the regulatory basis of the variation. METHODOLOGY Phenotypic expression was characterized by DNA and RNA sequencing, microscopy, and differential bacteriology. Regulatory genes were identified by cloning and bioinformatics.Results/Key findings. Whereas S produced larger quantities of extracellular DNA, R was upregulated in the production of a unique chromosome 1-encoded Siphoviridae-like bacteriophage, φMSHR5848. Exploratory transcriptional analyses revealed significant differences in variant expression of genes encoding siderophores, pili assembly, type VI secretion system cluster 4 (T6SS-4) proteins, several exopolysaccharides and secondary metabolites. A single 3 base duplication in S was the only difference that separated the variants genetically. It occurred upstream of a cluster of bacteriophage-associated genes on chromosome 2 that were upregulated in S. The first two genes were involved in regulating expression of the multiple phenotypes distinguishing S and R. CONCLUSION Bacteriophage-associated proteins have a major role in the phenotypic expression of MSHR5848. The goals are to determine the regulatory basis of this phenotypic variation and its role in pathogenesis and environmental persistence of B. pseudomallei.
Collapse
Affiliation(s)
- David DeShazer
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Sean Lovett
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Joshua Richardson
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Galina Koroleva
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA.,†Present address: Room 7N109, Center for Human Immunology, Autoimmunity and Inflammation, National Institute of Allergy and Infectious Diseases, 10 Center Drive, Bethesda, MD 20814, USA
| | - Kathleen Kuehl
- 3Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Kei Amemiya
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Mei Sun
- 4United States Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, USA
| | - Patricia Worsham
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Susan Welkos
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
3
|
Shea AA, Bernhards RC, Cote CK, Chase CJ, Koehler JW, Klimko CP, Ladner JT, Rozak DA, Wolcott MJ, Fetterer DP, Kern SJ, Koroleva GI, Lovett SP, Palacios GF, Toothman RG, Bozue JA, Worsham PL, Welkos SL. Two stable variants of Burkholderia pseudomallei strain MSHR5848 express broadly divergent in vitro phenotypes associated with their virulence differences. PLoS One 2017; 12:e0171363. [PMID: 28187198 PMCID: PMC5302386 DOI: 10.1371/journal.pone.0171363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei (Bp), the agent of melioidosis, causes disease ranging from acute and rapidly fatal to protracted and chronic. Bp is highly infectious by aerosol, can cause severe disease with nonspecific symptoms, and is naturally resistant to multiple antibiotics. However, no vaccine exists. Unlike many Bp strains, which exhibit random variability in traits such as colony morphology, Bp strain MSHR5848 exhibited two distinct and relatively stable colony morphologies on sheep blood agar plates: a smooth, glossy, pale yellow colony and a flat, rough, white colony. Passage of the two variants, designated "Smooth" and "Rough", under standard laboratory conditions produced cultures composed of > 99.9% of the single corresponding type; however, both could switch to the other type at different frequencies when incubated in certain nutritionally stringent or stressful growth conditions. These MSHR5848 derivatives were extensively characterized to identify variant-associated differences. Microscopic and colony morphology differences on six differential media were observed and only the Rough variant metabolized sugars in selective agar. Antimicrobial susceptibilities and lipopolysaccharide (LPS) features were characterized and phenotype microarray profiles revealed distinct metabolic and susceptibility disparities between the variants. Results using the phenotype microarray system narrowed the 1,920 substrates to a subset which differentiated the two variants. Smooth grew more rapidly in vitro than Rough, yet the latter exhibited a nearly 10-fold lower lethal dose for mice than Smooth. Finally, the Smooth variant was phagocytosed and replicated to a greater extent and was more cytotoxic than Rough in macrophages. In contrast, multiple locus sequence type (MLST) analysis, ribotyping, and whole genome sequence analysis demonstrated the variants' genetic conservation; only a single consistent genetic difference between the two was identified for further study. These distinct differences shown by two variants of a Bp strain will be leveraged to better understand the mechanism of Bp phenotypic variability and to possibly identify in vitro markers of infection.
Collapse
Affiliation(s)
- A. A. Shea
- Diagnostic Systems Division, USAMRIID, Frederick, Maryland, United States of America
| | - R. C. Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - C. K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - C. J. Chase
- Diagnostic Systems Division, USAMRIID, Frederick, Maryland, United States of America
| | - J. W. Koehler
- Diagnostic Systems Division, USAMRIID, Frederick, Maryland, United States of America
| | - C. P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - J. T. Ladner
- Center for Genome Sciences, USAMRIID, Frederick, Maryland, United States of America
| | - D. A. Rozak
- Diagnostic Systems Division, USAMRIID, Frederick, Maryland, United States of America
| | - M. J. Wolcott
- Diagnostic Systems Division, USAMRIID, Frederick, Maryland, United States of America
| | - D. P. Fetterer
- Biostatistical Services Division, USAMRIID, Frederick, Maryland, United States of America
| | - S. J. Kern
- Biostatistical Services Division, USAMRIID, Frederick, Maryland, United States of America
| | - G. I. Koroleva
- Center for Genome Sciences, USAMRIID, Frederick, Maryland, United States of America
| | - S. P. Lovett
- Center for Genome Sciences, USAMRIID, Frederick, Maryland, United States of America
| | - G. F. Palacios
- Center for Genome Sciences, USAMRIID, Frederick, Maryland, United States of America
| | - R. G. Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - J. A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - P. L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - S. L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| |
Collapse
|
4
|
Bernhards RC, Cote CK, Amemiya K, Waag DM, Klimko CP, Worsham PL, Welkos SL. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice. Arch Microbiol 2016; 199:277-301. [PMID: 27738703 PMCID: PMC5306356 DOI: 10.1007/s00203-016-1303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3–180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Collapse
Affiliation(s)
- R C Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
- Present Address: Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, 21010-5424, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - K Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - D M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - C P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - P L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
5
|
Challacombe JF, Stubben CJ, Klimko CP, Welkos SL, Kern SJ, Bozue JA, Worsham PL, Cote CK, Wolfe DN. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates. PLoS One 2014; 9:e115951. [PMID: 25536074 PMCID: PMC4275268 DOI: 10.1371/journal.pone.0115951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022] Open
Abstract
Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.
Collapse
Affiliation(s)
- Jean F. Challacombe
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, United States of America
- * E-mail:
| | - Chris J. Stubben
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, United States of America
| | - Christopher P. Klimko
- US Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, MD, United States of America
| | - Susan L. Welkos
- US Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, MD, United States of America
| | - Steven J. Kern
- US Army Medical Research Institute of Infectious Diseases, Biostatistics Division, Fort Detrick, MD, United States of America
| | - Joel A. Bozue
- US Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, MD, United States of America
| | - Patricia L. Worsham
- US Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, MD, United States of America
| | - Christopher K. Cote
- US Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, MD, United States of America
| | - Daniel N. Wolfe
- Defense Threat Reduction Agency, Chemical and Biological Technologies Department, Fort Belvoir, VA, United States of America
| |
Collapse
|
6
|
Yam H, Abdul Rahim A, Mohamad S, Mahadi NM, Abdul Manaf U, Shu-Chien AC, Najimudin N. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei. PLoS One 2014; 9:e99218. [PMID: 24927285 PMCID: PMC4057154 DOI: 10.1371/journal.pone.0099218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022] Open
Abstract
Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.
Collapse
Affiliation(s)
- Hokchai Yam
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Ainihayati Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Suriani Mohamad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Nor Muhammad Mahadi
- Comparative Genomics and Genetics Research Centre, Malaysia Genome Institute, Kajang, Selangor, Malaysia
| | - Uyub Abdul Manaf
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | | | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|