1
|
Hayes RS, Oraby AK, Camargo C, Marchant DJ, Sagan SM. Mapping respiratory syncytial virus fusion protein interactions with the receptor IGF1R and the impact of alanine-scanning mutagenesis on viral infection. J Gen Virol 2024; 105. [PMID: 38231539 DOI: 10.1099/jgv.0.001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) has two main surface glycoproteins, the attachment glycoprotein (G) and the fusion (F) protein, which together mediate viral entry. Attachment is mediated by the RSV-G protein, while the RSV-F protein makes specific contact with the cellular insulin-like growth factor 1 receptor (IGF1R). This interaction leads to IGF1R activation and initiates a signalling cascade that calls the co-receptor, nucleolin, from the nucleus to the cell surface, where it can trigger viral fusion. We performed molecular docking analysis, which provided a potential set of 35 residues in IGF1R that may be important for interactions with RSV-F. We used alanine-scanning mutagenesis to generate IGF1R mutants and assessed their abundance and maturation, as well as the effect of mutation on RSV infection. We identified several mutations that appear to inhibit IGF1R maturation; but surprisingly, these mutations had no significant effect on RSV infection. This suggests that maturation of IGF1R may not be required for RSV infection. Additionally, we identified one residue, S788, that, when mutated, significantly reduced RSV infection. Further analysis revealed that this mutation disrupted a hydrogen bonding network that may be important for both IGF1R maturation and RSV infection.
Collapse
Affiliation(s)
- Rachel S Hayes
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Ahmed K Oraby
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City, Giza, Egypt
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - David J Marchant
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Selena M Sagan
- Department of Biochemistry, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Dondalska A, Axberg Pålsson S, Spetz AL. Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis. Int J Mol Sci 2022; 23:ijms232314593. [PMID: 36498932 PMCID: PMC9735517 DOI: 10.3390/ijms232314593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25-40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30-40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.
Collapse
|
3
|
Ronaghan NJ, Soo M, Pena U, Tellis M, Duan W, Tabatabaei-Zavareh N, Kramer P, Hou J, Moraes TJ. M1-like, but not M0- or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion. PLoS One 2022; 17:e0276013. [PMID: 36228018 PMCID: PMC9560600 DOI: 10.1371/journal.pone.0276013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common childhood infection that in young infants can progress into severe bronchiolitis and pneumonia. Disease pathogenesis results from both viral mediated and host immune processes of which alveolar macrophages play an important part. Here, we investigated the role of different types of alveolar macrophages on RSV infection using an in vitro co-culture model involving primary tissue-derived human bronchial epithelial cells (HBECs) and human blood monocyte-derived M0-like, M1-like, or M2-like macrophages. It was hypothesized that the in vitro model would recapitulate previous in vivo findings of a protective effect of macrophages against RSV infection. It was found that macrophages maintained their phenotype for the 72-hour co-culture time period and the bronchial epithelial cells were unaffected by the macrophage media. HBEC infection with RSV was decreased by M1-like macrophages but enhanced by M0- or M2-like macrophages. The medium used during the co-culture also impacted the outcome of the infection. This work demonstrates that alveolar macrophage phenotypes may have differential roles during epithelial RSV infection, and demonstrates that an in vitro co-culture model could be used to further investigate the roles of macrophages during bronchial viral infection.
Collapse
Affiliation(s)
- Natalie J. Ronaghan
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mandy Soo
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Uriel Pena
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Marisa Tellis
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Wenming Duan
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | - Philipp Kramer
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Juan Hou
- STEMCELL Technologies Canada Inc., Vancouver, British Columbia, Canada
| | - Theo J. Moraes
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Inhibition of Respiratory Syncytial Virus Infection by Small Non-Coding RNA Fragments. Int J Mol Sci 2022; 23:ijms23115990. [PMID: 35682669 PMCID: PMC9180592 DOI: 10.3390/ijms23115990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25–40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.
Collapse
|
5
|
Boonarkart C, Suptawiwat O, Ruangrung K, Maneechotesuwan K, Auewarakul P. Microparticles from human the lower airway show inhibitory activity against respiratory syncytial virus. Arch Virol 2021; 166:2579-2584. [PMID: 34170427 DOI: 10.1007/s00705-021-05144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Airway microparticles (MPs) have been shown previously to inhibit influenza virus by trapping virions on their surface through their surface viral receptor. It was hypothesized that airway MPs may carry most of the epithelial cell surface molecules, including receptors for respiratory viruses, and may be able to inhibit various respiratory viruses. We show here that MPs from human bronchoalveolar lavage (BAL) can inhibit respiratory syncytial virus (RSV). Those MPs stained positive for the RSV receptor, CX3CR1. Furthermore, incubating the MPs with a monoclonal antibody against CX3CR1 reduced the anti-RSV activity. These data indicate that MPs can contribute to respiratory innate antiviral defense.
Collapse
Affiliation(s)
- Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kanyarat Ruangrung
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Hu T, Yu H, Lu M, Yuan X, Wu X, Qiu H, Chen J, Huang S. TLR4 and nucleolin influence cell injury, apoptosis and inflammatory factor expression in respiratory syncytial virus-infected N2a neuronal cells. J Cell Biochem 2019; 120:16206-16218. [PMID: 31081244 DOI: 10.1002/jcb.28902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Respiratory syncytial virus (RSV) infection was recently reported to be associated with central nervous system (CNS) symptoms and neurological complications; however, related studies are very limited. Moreover, the molecular mechanism underlying RSV neuropathogenesis is still unclear. Our previous study revealed that toll-like receptor 4 (TLR4) and nucleolin (C23) could be modulated and that they played a role during RSV infection in mouse neuronal-2a (N2a) cells. In the present study, the effects of silencing of TLR4 and C23 on RSV propagation and N2a cellular responses were examined by using RNA interference technology. Four N2a cell treatment groups were established, namely, a normal control group, RSV control group, TLR4 siRNA + RSV group, and C23 siRNA + RSV group. Expression changes in NeuN protein and colocalization of C23 and TLR4 with RSV F protein were assessed using confocal microscopy. Changes in TLR4 and C23 mRNA expression, TLR4, C23, TLR3, TLR7, and p-NF-κB protein expression, and interleukin (IL)-8, IL-6, and tumor necrosis factor (TNF-α) cytokine secretion was measured using quantitative real-time reverse-transcription polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay, respectively. RSV titers and the apoptotic status of N2a cells were monitored using plaque formation assays and flow cytometry, respectively. The results indicated that TLR4 and C23 gene knockdown decreased the amount of F protein in RSV-infected N2a cells, inhibited RSV propagation, attenuated N2a neuronal injury, diminished cell apoptosis levels, downregulated TLR3 and TLR7 protein expression, and reduced inflammatory protein expression. Therefore, TLR4 and C23 knockdown influences cell injury, apoptosis and inflammatory protein expression in RSV-infected N2a cells.
Collapse
Affiliation(s)
- Tao Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Haiyang Yu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Min Lu
- Department of Laboratory, the first affiliated hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xiaoling Yuan
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Xuan Wu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Huan Qiu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Jason Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Shenghai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
7
|
Holguera J, Villar E, Muñoz-Barroso I. Identification of cellular proteins that interact with Newcastle Disease Virus and human Respiratory Syncytial Virus by a two-dimensional virus overlay protein binding assay (VOPBA). Virus Res 2014; 191:138-42. [PMID: 25109545 DOI: 10.1016/j.virusres.2014.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Although it is well documented that the initial attachment receptors for Newcastle Disease Virus (NDV) and Respiratory Syncytial Virus (RSV) are sialic acid-containing molecules and glycosaminoglycans respectively, the exact nature of the receptors for both viruses remains to be deciphered. Moreover, additional molecules at the host cell surface might be involved in the entry mechanism. With the aim of identifying the cellular proteins that interact with NDV and RSV at the cell surface, we performed a virus overlay protein binding assay (VOPBA). Cell membrane lysates were separated by two dimensional (2D) gel electrophoresis and electrotransferred to PVDF membranes, after which they were probed with high viral concentrations. NDV interacted with a Protein Disulfide Isomerase from chicken fibroblasts. In the case of RSV, we detected 15 reactive spots, which were identified as six different proteins, of which nucleolin was outstanding. We discuss the possible role of PDI and nucleolin in NDV and RSV entry, respectively.
Collapse
Affiliation(s)
- Javier Holguera
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.
| |
Collapse
|
8
|
Hägglund S, Hu K, Blodörn K, Makabi-Panzu B, Gaillard AL, Ellencrona K, Chevret D, Hellman L, Bengtsson KL, Riffault S, Taylor G, Valarcher JF, Eléouët JF. Characterization of an experimental vaccine for bovine respiratory syncytial virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:997-1004. [PMID: 24828093 PMCID: PMC4097437 DOI: 10.1128/cvi.00162-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and human respiratory syncytial virus (HRSV) are major causes of respiratory disease in calves and children, respectively, and are priorities for vaccine development. We previously demonstrated that an experimental vaccine, BRSV-immunostimulating complex (ISCOM), is effective in calves with maternal antibodies. The present study focuses on the antigenic characterization of this vaccine for the design of new-generation subunit vaccines. The results of our study confirmed the presence of membrane glycoprotein (G), fusion glycoprotein (F), and nucleoprotein (N) proteins in the ISCOMs, and this knowledge was extended by the identification of matrix (M), M2-1, phosphoprotein (P), small hydrophobic protein (SH) and of cellular membrane proteins, such as the integrins αVβ1, αVβ3, and α3β1. The quantity of the major protein F was 4- to 5-fold greater than that of N (∼77 μg versus ∼17 μg/calf dose), whereas G, M, M2-1, P, and SH were likely present in smaller amounts. The polymerase (L), M2-2, nonstructural 1 (NS1), and NS2 proteins were not detected, suggesting that they are not essential for protection. Sera from the BRSV-ISCOM-immunized calves contained high titers of IgG antibody specific for F, G, N, and SH. Antibody responses against M and P were not detected; however, this does not exclude their role in protective T-cell responses. The absence of immunopathological effects of the cellular proteins, such as integrins, needs to be further confirmed, and their possible contribution to adjuvant functions requires elucidation. This work suggests that a combination of several surface and internal proteins should be included in subunit RSV vaccines and identifies absent proteins as potential candidates for differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Kefei Hu
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | | | - Karin Ellencrona
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Didier Chevret
- INRA, UMR1319 Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Lars Hellman
- Uppsala University, Department of Cell and Molecular Biology, Chemical Biology, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden National Veterinary Institute, Department of Virology, Immunobiology and Parasitology, Uppsala, Sweden
| | | |
Collapse
|
9
|
Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS One 2013; 8:e69670. [PMID: 23936072 PMCID: PMC3720563 DOI: 10.1371/journal.pone.0069670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM). Viral infection (staining of F and G proteins, nucleoprotein RNA level), mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA), Goblet cells (PAS), mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC) were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus.
Collapse
|
10
|
Lay MK, González PA, León MA, Céspedes PF, Bueno SM, Riedel CA, Kalergis AM. Advances in understanding respiratory syncytial virus infection in airway epithelial cells and consequential effects on the immune response. Microbes Infect 2012; 15:230-42. [PMID: 23246463 DOI: 10.1016/j.micinf.2012.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023]
Abstract
This article reviews aspects of respiratory syncytial virus (RSV) infection in airway epithelial cells (AECs), including cytopathogenesis, entry, replication and the induction of immune response to the virus, including a new role for thymic stromal lymphopoietin in RSV immunopathology.
Collapse
Affiliation(s)
- Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago E-8331010, Chile
| | | | | | | | | | | | | |
Collapse
|