1
|
Li X, Liu Y, Zou Y, Zhang J, Wang Y, Ding Y, Shi Z, Guo X, Zhang S, Yin H, Guo A, Wang S. Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. Infect Immun 2024; 92:e0023224. [PMID: 39037247 PMCID: PMC11320943 DOI: 10.1128/iai.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Jiayun Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Lian L, Sun H, Wang J, Li W, Sheng Y, Gong X, Sun Q, Wang P, Zheng Y, Song H. Identification of the interaction between MAPK1 and Eimeria acervulina serine protease inhibitor: a preliminary functional study. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1716-1720. [PMID: 38946425 PMCID: PMC11659786 DOI: 10.3724/abbs.2024095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Liyin Lian
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - He Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Jing Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Wanjing Li
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yifan Sheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Xinyue Gong
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Qian Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Pu Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yadong Zheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Houhui Song
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| |
Collapse
|
3
|
Sun F, Wang W, Li Z, Li Y, Guo W, Kong Y. Design, expression and biological evaluation of DX-88mut as a novel selective factor XIa inhibitor for antithrombosis. Bioorg Chem 2024; 142:106951. [PMID: 37924755 DOI: 10.1016/j.bioorg.2023.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Thrombotic diseases, such as myocardial infarction, stroke, and deep vein thrombosis, severely threaten human health, and anticoagulation is an effective way to prevent such illnesses. However, most anticoagulant drugs in the clinic have different bleeding risks. Previous studies have shown that coagulation factor XI is an ideal target for safe anticoagulant drug development. Here, we designed the FXIa inhibitory peptide DX-88mut by replacing Loop1 (DGPCRAAHPR) and Loop2 (IYGGC) in DX-88, which is a clinical drug targeting PKa for the treatment of hereditary angioedema, using Loop1 (TGPCRAMISR) and Loop2 (FYGGC) in the FXIa inhibitory peptide PN2KPI, respectively. DX-88mut selectively inhibited FXIa against a panel of serine proteases with an IC50 value of 14.840 ± 0.453 nM, dose-dependently prolonged APTT in mouse, rat and human plasma, and potently inhibited FeCl3-induced carotid artery thrombosis in mice at a dose of 1 µmol/kg. Additionally, DX-88mut did not show a significant bleeding risk at a dose of 5 µmol/kg. Taken together, these results show that DX-88mut is a potential candidate for the development of a novel antithrombotic agent.
Collapse
Affiliation(s)
- Feilong Sun
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Weihao Wang
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Zhengyang Li
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Yitong Li
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Wei Guo
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China.
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China.
| |
Collapse
|
4
|
Wu F, Wu J, Chen X, Zhou J, Du Z, Tong D, Zhang H, Huang Y, Yang Y, Du A, Ma G. A secreted BPTI/Kunitz inhibitor domain-containing protein of barber's pole worm interacts with host NLRP3 inflammasome activation-associated G protein subunit to inhibit IL-1β and IL-18 maturation in vitro. Vet Parasitol 2023; 323:110052. [PMID: 37865081 DOI: 10.1016/j.vetpar.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Protease inhibitors are major components of excretory/secretory products released by parasitic nematodes and have been proposed to play roles in host-parasite interactions. Haemonchus contortus (the barber's pole worm) encodes for several serine protease inhibitors, and in a previous study we identified a trypsin inhibitor-like serine protease inhibitor of this blood-feeding nematode, SPI-I8, as necessary for anticoagulation. Here, we demonstrated that a bovine pancreatic trypsin inhibitor/Kunitz-type serine protease inhibitor (BPTI/Kunitz) domain-containing protein highly expressed in parasitic stages, HCON_00133150, is involved in suppressing proinflammatory cytokine production in mammalian cells. Fluorescent labelling of HCON_00133150 revealed a punctate localisation at the inner hypodermal membrane of H. contortus, an organ closely related to the excretory column. Yeast two-hybrid screening and immunoprecipitation-mass spectrometry identified that the recombinant HCON_00133150 physically interacted with a range of host proteins including the G protein subunit beta 1 of sheep (Ovis aries; OaGNB1), a negative regulator of NLRP3 inflammasome activation. Interestingly, heterologous expression of HCON_00133150 enhanced the inhibitory effect of OaGNB1 on NLRP3 inflammasome and the maturation of proinflammatory cytokines IL-1β and IL-18 in transfected cells. 1-to-1 orthologues (n = 33) of BPTI/Kunitz inhibitor domain-containing proteins were predicted in clades III, IV and V (but not clade I) parasitic nematodes. Structural (tandem BPTI/Kunitz inhibitor domains inverted into the globular reticulation) and functional (a GNB1 enhancer) characterisation of HCON_00133150 and its orthologues elucidated that these molecules might contribute to immune suppression by parasitic nematodes in animals and humans.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jie Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jingru Zhou
- MOE Frontier Science Center for Brain and Brain-machine integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. CURRENT CANCER THERAPY REVIEWS 2023; 19:292-297. [DOI: 10.2174/1573394719666230427094247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 08/19/2024]
Abstract
Abstract:Breast cancer is a major cause of cancer deaths in women, with approximately 1.2 million new cases per year. Current treatment options for breast cancer include surgery, radiation, hormone therapy, and chemotherapy. However, the non-selective cytotoxicity of chemotherapeutic agents often leads to severe side effects, while drug resistance can worsen patient outcomes. Therefore, the development of more effective and less toxic anticancer drugs is a critical need. This study aimed to review the literature on Echinococcus granulosus antigens with anticancer potential against triple-negative breast cancer. Recent studies have suggested that certain parasite antigens may have potential anticancer effects. Specifically, research has shown that echinococcosis, a disease caused by the parasitic cestode Echinococcus granulosus, may have a protective effect against cancer. These findings offer new insights into the potential use of E. granulosus antigens in the development of novel cancer therapies and tumor cell vaccines. The findings of recent studies suggested that E. granulosus antigens may have the potential to be used in effective and less toxic cancer treatments. However, further research is needed to fully understand the mechanisms behind the anticancer effects of these antigens and develop new cancer therapies and vaccines
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Wen TY, Wu XQ, Ye JR, Qiu YJ, Rui L, Zhang Y. Two Novel Bursaphelenchus xylophilus Kunitz Effector Proteins Using Different Infection and Survival Strategies to Suppress Immunity in Pine. PHYTOPATHOLOGY 2023; 113:539-548. [PMID: 36976314 DOI: 10.1094/phyto-04-22-0127-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, results in tremendous economic loss in conifer production every year. To disturb the host immune responses, plant pathogens secrete a mass of effector proteins that facilitate the infection process. Although several effectors of B. xylophilus have been identified, detailed mechanisms of their functions remain largely unexplored. Here, we reveal two novel B. xylophilus Kunitz effectors, named BxKU1 and BxKU2, using different infection strategies to suppress immunity in Pinus thunbergii. We found that both BxKU1 and BxKU2 could suppress PsXEG1-triggered cell death and were present in the nucleus and cytoplasm in Nicotiana benthamiana. However, they had different three-dimensional structures and various expression patterns in B. xylophilus infection. In situ hybridization experiments showed that BxKU2 was expressed in the esophageal glands and ovaries, whereas BxKU1 was only expressed in the esophageal glands of females. We further confirmed that the morbidity was significantly decreased in P. thunbergii infected with B. xylophilus when BxKU1 and BxKU2 were silenced. The silenced BxKU2I, but not BxKU1, affected the reproduction and feeding rate of B. xylophilus. Moreover, BxKU1 and BxKU2 targeted to different proteins in P. thunbergii, but they all interacted with thaumatin-like protein 4 (TLP4) according to yeast two-hybrid screening. Collectively, our study showed that B. xylophilus could incorporate two Kunitz effectors in a multilayer strategy to counter immune response in P. thunbergii, which could help us better understand the interaction between plant and B. xylophilus.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
7
|
Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M. Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding. Int J Mol Sci 2023; 24:1556. [PMID: 36675071 PMCID: PMC9865953 DOI: 10.3390/ijms24021556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Hanne Voet
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ricardo N. Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Anderson Sá-Nunes
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Heng J, Liu H, Xu J, Huang X, Sun X, Yang R, Xia Q, Zhao P. KPI5 Is Involved in the Regulation of the Expression of Antibacterial Peptide Genes and Hemolymph Melanization in the Silkworm, Bombyx mori. Front Immunol 2022; 13:907427. [PMID: 35669774 PMCID: PMC9164257 DOI: 10.3389/fimmu.2022.907427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Kunitz-type protease inhibitors (KPIs) are ubiquitously found in many organisms, and participate in various physiological processes. However, their function in insects remains to be elucidated. In the present study, we characterized and functionally analyzed silkworm KPI5. Sequence analysis showed that KPI5 contains 85 amino acids with six conserved cysteine residues, and the P1 site is a phenylalanine residue. Inhibitory activity and stability analyses indicated that recombinant KPI5 protein significantly inhibited the activity of chymotrypsin and was highly tolerant to temperature and pH. The spatio-temporal expression profile analysis showed that KPI5 was synthesized in the fat body and secreted into the hemolymph. In vivo induction analysis showed that the expression of KPI5 in the fat body was significantly upregulated by pathogen-associated molecular patterns (PAMPs). Binding assays suggested that KPI5 can bind to pathogens and PAMPs. In vitro pathogen growth inhibition assay and encapsulation analysis indicated that KPI5 can neither kill pathogenic bacteria directly nor promote the encapsulation of agarose beads by silkworm hemocytes. Recombinant protein injection test and CRISPR/Cas9-mediated knockdown showed that KPI5 promotes the expression of antimicrobial peptides (AMPs) in the fat body. Moreover, the survival rate of individuals in the KPI5 knockdown group was significantly lower than that of the control group after pathogen infection. Phenoloxidase (PO) activity assays showed that KPI5 significantly inhibited the hemolymph PO activity and melanization induced by PAMPs. These findings suggested that KPI5 plays a dual regulatory role in innate immunity by promoting the expression of antimicrobial peptides in the fat body and inhibiting hemolymph melanization. Our study furthers the understanding of the function of insect KPIs and provides new insights into the regulatory mechanism of insect immune homeostasis.
Collapse
Affiliation(s)
- Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Jiahui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaotong Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Runze Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
10
|
Gomes PS, Carneiro MPD, Machado PDA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-Vidal V, Sodero ACR, De-Simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022; 44:2089-2106. [PMID: 35678670 PMCID: PMC9164065 DOI: 10.3390/cimb44050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Monique Pacheco Duarte Carneiro
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Patrícia de Almeida Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Valter Viana de Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Alessandra Marcia da Fonseca-Martins
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | | | | | - Ana Paula Cabral de Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.V.M.P.d.S.); (A.C.R.S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Diseases Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Sanches RCO, Mambelli F, Oliveira SC. Neutrophils and schistosomiasis: a missing piece in pathology. Parasite Immunol 2022; 44:e12916. [PMID: 35332932 DOI: 10.1111/pim.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a chronic human parasitic disease that causes serious health problems worldwide. The disease-associated liver pathology is one of the hallmarks of infections by S. mansoni and S. japonicum, and is accountable for the debilitating condition found in infected patients. In the past few years, investigative studies have highlighted the key role played by neutrophils and the influence of inflammasome signaling pathway in different pathological conditions. However, it is noteworthy that the study of inflammasome activation in neutrophils has been overlooked by reports concerning macrophages and monocytes. This interplay between neutrophils and inflammasomes is much more poorly investigated during schistosomiasis. Herein we reviewed the role of neutrophils during schistosomiasis and addressed the potential connection between these cells and inflammasome activation in this context.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Mambelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
12
|
Zhang H, Tian M, Qi W, Wu J, Zheng H, Guo G, Zhang L, Ranasinghe SL, McManus DP, Li J, Zhang W. Bioinformatic comparison of Kunitz protease inhibitors in Echinococcus granulosus sensu stricto and E. multilocularis and the genes expressed in different developmental stages of E. granulosus s.s. BMC Genomics 2021; 22:907. [PMID: 34922456 PMCID: PMC8684439 DOI: 10.1186/s12864-021-08219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background
Cystic and alveolar echinococcosis caused by the tapeworms Echinococcus granulosus sensu stricto (s.s.) and E. multilocularis, respectively, are important zoonotic diseases. Protease inhibitors are crucial for the survival of both Echinococcus spp. Kunitz-type inhibitors play a regulatory role in the control of protease activity. In this study,we identified Kunitz-type domain protease inhibitors(KDPIs) present in the genomes of these two tapeworms and analyzed the gene sequences using computational, structural bioinformatics and phylogenetic approaches to evaluate the evolutionary relationships of these genes. Hi-seq transcriptome analysis showed that E. granulosuss.s. KDPIs were differentially expressed in the different developmental stages. We validated some of the genes expressed in adult worm, protoscolex and cyst germinal membrane of E. granulosuss.s. and E. multilocularis by quantitative PCR. Results A total of 19 genes from E. multilocularis and 23 genes from E. granulosuss.s. were predicted to be KDPIs with the most containing a single Kunitz-domain. A maximum likelihood method phylogenetic tree indicated that the E. granulosuss.s. and E. multilocularis Kunitz domain peptides were divided into three branches containing 9 clusters. The ratio of positively charged residues and neutral residues are different between E. multilocularis and E. granulosuss.s. KDPIs. We also found that E. multilocularis had higher percentage of sequences containing signal peptides (17/19, 89.47%) than that of E. granulosuss.s. (14/23, 60.87%). Transcript analysis showed all the E. granulosuss.s. KDPI genes were expressed differentially in four developmental stages of the worm. Transcription analysis showed that 9 KDPIs (including EG_07244,EGR_08716 and EGR_10096) were highly upregulated in adult worm, and 2 KDPIs (EG_09268 and EG_09490) were highly expressed in the cyst germinal membrane. Quantitative gene expression analysis(qPCR) of four genes confirmed the expression of these genes. EGR_08716 and its homologous gene (EmuJ_001137000) were highly and specifically expressed in adult worms of the two worms. Conclusions A total 19 and 23 KDPIs were identified in the genomes of E. multilocularis and E. granulosus s.s. , respectively. The differential expression of these KDPIs in different stages may indicate their different roles in the different hosts. The difference in characterization of KDPIs may be associated with the different pathology of metacestode stage of these two parasites. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08219-4.
Collapse
|
13
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
14
|
S. mansoni SmKI-1 Kunitz-domain: Leucine point mutation at P1 site generates enhanced neutrophil elastase inhibitory activity. PLoS Negl Trop Dis 2021; 15:e0009007. [PMID: 33465126 PMCID: PMC7846107 DOI: 10.1371/journal.pntd.0009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD's inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.
Collapse
|
15
|
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 2020; 88:537-548. [PMID: 32696206 DOI: 10.1007/s00239-020-09959-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this 'flexibility within the structural rigidity' is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
16
|
Abstract
The journal Microbes and Infection is celebrating its vigintennial anniversary and has reunited for this occasion two dozen reviews illustrating achievements of the past as well as future challenges in the field of infectious diseases. From top-notch vaccine development strategies, to high-throughput powered analysis of complex host-pathogen interactions, to innovative therapeutic designs, this issue covers the entire spectrum of pathogens and areas of their confrontation with the host.
Collapse
Affiliation(s)
- Sophia J Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Copenhagen, Denmark.
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, USA
| |
Collapse
|