1
|
Rajabzadeh M, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Characterizing the interplay between Acinetobacter baumannii, A549 cells, and anti-Omp34 antibodies: implications for adherence, internalization, and cytotoxicity. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01218-4. [PMID: 39480642 DOI: 10.1007/s12223-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| |
Collapse
|
2
|
Zhou J, Feng D, Chen Y, Li X, Cen J, Wu W, Zheng W, Gan W, Zhang T. Effect of leucine on mitochondria and oxidative stress to reduce virulence and pathogenicity of Acinetobacter baumannii. Microbiol Res 2024; 290:127932. [PMID: 39454348 DOI: 10.1016/j.micres.2024.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Elucidating the virulence mechanisms of A. baumannii is essential for developing strategies to mitigate pathogenicity. Although high-virulent strains are associated with increased mortality rate in severely infected patients, the underlying mechanisms remains not well understood. Our analysis revealed leucine as a pivotal biomarker, with the 11dP and paaK being significant contributors to virulence. The ATP-dependent activity and antioxidant activity were identified as the most important pathways in distinguishing the virulence of A. baumannii. Exogenous leucine was found to modulate mitochondria dysfunction and oxidative stress, thereby diminishing the pathogenicity of A. baumannii towards Beas 2B cells. Moreover, leucine reduced the virulence of A. baumannii to Galleria mellonella (G. mellonella) and alleviated pathological damage to lung tissues in mice. Our study offers a novel treatment strategy based on metabolomics, which may assist in the exploration and management of infections caused by highly virulent pathogens. It sets a new course for reducing the impact of highly virulent A. baumannii infections and has significant implications for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jianxia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Yuetao Chen
- The State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xia Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Jiemei Cen
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenzheng Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenlei Gan
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
4
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
5
|
Zhou J, Feng D, Li X, Chen Y, Zhang M, Wu W, Zhu J, Li H, Peng X, Zhang T. L-Serine enables reducing the virulence of Acinetobacter baumannii and modulating the SIRT1 pathway to eliminate the pathogen. Microbiol Spectr 2024; 12:e0322623. [PMID: 38240573 PMCID: PMC10913490 DOI: 10.1128/spectrum.03226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 03/07/2024] Open
Abstract
The emergence of high-virulent Acinetobacter baumannii strains increases the mortality of patients and seriously affects their prognosis, which motivates us to explore novel ways to control such infections. In this study, gas chromatography-mass spectrometry was adopted to explore the metabolic difference between high- and low-virulent A. baumannii strains, and the decreased L-serine levels were identified as the most crucial biomarker in low-virulent A. baumannii strains. In vitro, L-serine reduced the virulence of A. baumannii to Beas 2B cells and inhibited the activation of NLRP3 inflammasome via decreasing the generation of ROS and mtROS and the release of inflammatory cytokines (IL-18 and IL-1β) through upregulating SIRT1. In vivo, the Galleria mellonella model was adopted. L-serine downregulated the levels of virulence genes (ompA, carO, and omp33-36), reduced the mortality of A. baumannii to G. mellonella, and decreased the blacking speed as well as the degree of G. mellonella after infection. Taken together, we found that L-serine can reduce the virulence of A. baumannii and enhance the host's defense against the pathogen, providing a novel strategy for the treatment of infections caused by A. baumannii.IMPORTANCEAcinetobacter baumannii has become one of the most common and severe opportunistic pathogens in hospitals. The high-virulent A. baumannii strains pose a great threat to patients and increase the risk of nosocomial infection. However, the mechanism of virulence in A. baumannii is still not well understood. In the present study, we identified potential biomarkers in low-virulent A. baumannii strains. Our analysis revealed the effect of L-serine on reducing the virulence of A.baumannii. This discovery suggests that targeting L-serine could be a promising strategy for the treatment or adjunctive treatment of A. baumannii infections. The development of treatments targeting virulence may provide a substitute for the increasingly failed traditional antibacterial treatment.
Collapse
Affiliation(s)
- Jianxia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xia Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuetao Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xuanxian Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Chen D, Liang X, Lei J, Shen F, Yang F, Tang C. Enterococcus faecium inhibits NF-κB/NLRP3/IL-1β signaling pathway and antagonizes Salmonella-mediated inflammatory response. Future Microbiol 2024; 19:131-140. [PMID: 37994577 DOI: 10.2217/fmb-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/12/2023] [Indexed: 11/24/2023] Open
Abstract
Aim: This study explored the protective effect of Enterococcus faecium as a probiotic against Salmonella typhimurium infection. Materials & methods: The protective role of E. faecium against tissue damage by S. typhimurium infection and the expression of inflammatory cytokines and tight junction proteins were detected by histological observation, real-time quantitative PCR and immunohistochemical methods. Results: E. faecium demonstrated a regulatory function that affected the expression of Claudin-1 and enhanced tight junctions, suppressed the NF-κB/NLRP3/IL-1β signaling pathway and reduced the release of IL-6, TNF-α, IFN-γ, TLR4 and MYD88 and inflammatory damage to tissues by S. typhimurium in the duodenum, cecum and colon of mice. Conclusion: E. faecium antagonized S. Typhimurium alleviating inflammatory injury in mice through the NF-κB/NLRP3/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai, Tibetan Plateau Animal Genetic Resource Reservation & Utilization (Southwest University for Nationalities), Ministry of Education, Chengdu, 610041, China
| | - Xiaodong Liang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiangying Lei
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Fanyu Shen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai, Tibetan Plateau Animal Genetic Resource Reservation & Utilization (Southwest University for Nationalities), Ministry of Education, Chengdu, 610041, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai, Tibetan Plateau Animal Genetic Resource Reservation & Utilization (Southwest University for Nationalities), Ministry of Education, Chengdu, 610041, China
| |
Collapse
|
7
|
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol 2023; 16:116. [PMID: 38037103 PMCID: PMC10687997 DOI: 10.1186/s13045-023-01512-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signaling molecules in the modulation of various physiological functions, including inflammatory responses. However, at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic acids and lipids, further exacerbating the development of inflammatory responses and causing various inflammatory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against damage. This review systematically outlines the dynamic balance of ROS production and clearance under physiological conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scavenging biomaterials.
Collapse
Affiliation(s)
- Jiatong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tingyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, 610041, China.
| |
Collapse
|
8
|
Vibrio cholerae Porin OmpU Activates Dendritic Cells via TLR2 and the NLRP3 Inflammasome. Infect Immun 2023; 91:e0033222. [PMID: 36794951 PMCID: PMC9933687 DOI: 10.1128/iai.00332-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OmpU is one of the major porins of Vibrio cholerae, a Gram-negative human pathogen. Previously, we showed that OmpU stimulates host monocytes and macrophages and induces the production of proinflammatory mediators via activation of the Toll-like receptor 1/2 (TLR1/2)-MyD88-dependent pathways. In the present study, we show that OmpU activates murine dendritic cells (DCs) via activation of the TLR2-mediated pathway and the NLRP3 inflammasome, leading to the production of proinflammatory cytokines and DC maturation. Our data reveal that although TLR2 plays an important role in providing both priming and the activation signal for the NLRP3 inflammasome in OmpU-activated DCs, OmpU is capable of activating the NLRP3 inflammasome, even in the absence of TLR2, if a priming signal is given. Furthermore, we show that the OmpU-mediated interleukin-1β (IL-1β) production in DCs depends on calcium flux and mitochondrial reactive oxygen species (mitoROS) generation. Interestingly, both OmpU translocation to the mitochondria of DCs as well as calcium signaling contribute to mitoROS production and prompt NLRP3 inflammasome activation. We also demonstrate that OmpU induces downstream signaling via activation of phosphoinositide-3-kinase (PI3K)-AKT, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and transcription factor NF-κB. Furthermore, our data reveal that OmpU-mediated activation of TLR2 induces signaling via PKC, MAPKs p38 and extracellular signal-regulated kinase (ERK), and transcription factor NF-κB; however, PI3K and MAPK Jun N-terminal protein kinase (JNK) are activated in TLR2 independent manner.
Collapse
|
9
|
Yang N, Jin X, Zhu C, Gao F, Weng Z, Du X, Feng G. Subunit vaccines for Acinetobacter baumannii. Front Immunol 2023; 13:1088130. [PMID: 36713441 PMCID: PMC9878323 DOI: 10.3389/fimmu.2022.1088130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterium and a crucial opportunistic pathogen in hospitals. A. baumannii infection has become a challenging problem in clinical practice due to the increasing number of multidrug-resistant strains and their prevalence worldwide. Vaccines are effective tools to prevent and control A. baumannii infection. Many researchers are studying subunit vaccines against A. baumannii. Subunit vaccines have the advantages of high purity, safety, and stability, ease of production, and highly targeted induced immune responses. To date, no A. baumannii subunit vaccine candidate has entered clinical trials. This may be related to the easy degradation of subunit vaccines in vivo and weak immunogenicity. Using adjuvants or delivery vehicles to prepare subunit vaccines can slow down degradation and improve immunogenicity. The common immunization routes include intramuscular injection, subcutaneous injection, intraperitoneal injection and mucosal vaccination. The appropriate immunization method can also enhance the immune effect of subunit vaccines. Therefore, selecting an appropriate adjuvant and immunization method is essential for subunit vaccine research. This review summarizes the past exploration of A. baumannii subunit vaccines, hoping to guide current and future research on these vaccines.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghua Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fenglin Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqi Weng
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingran Du
- Department of Infectious Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| |
Collapse
|
10
|
Ding Y, Ye B, Sun Z, Mao Z, Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310009 China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| |
Collapse
|
11
|
Sun J, Li Y. Pyroptosis and respiratory diseases: A review of current knowledge. Front Immunol 2022; 13:920464. [PMID: 36248872 PMCID: PMC9561627 DOI: 10.3389/fimmu.2022.920464] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a relatively newly discovered programmed cell death accompanied by an inflammatory response. In the classical view, pyroptosis is mediated by caspases-1,-4,-5,-11 and executed by GSDMD, however, recently it was demonstrated that caspase-3 and-8 also participate in the process of pyroptosis, by cleaving GSDMD/E and GSDMD respectively. Different from autophagy and apoptosis, many pores are formed on the cell membrane during pyroptosis, which makes the cell membrane lose its integrity, eventually leading to the release of cytokines interleukin(IL)-1β and IL-18. When the body is infected with pathogens or exposed to some stimulations, pyroptosis could play an immune defense role. It is found that pyroptosis exists widely in infectious and inflammatory respiratory diseases such as acute lung injury, bronchial dysplasia, chronic obstructive pulmonary disease, and asthma. Excessive pyroptosis may accompany airway inflammation, tissue injury, and airway damage, and induce an inflammatory reaction, leading to more serious damage and poor prognosis of respiratory diseases. This review summarizes the relationship between pyroptosis and related respiratory diseases.
Collapse
|
12
|
Hou S, Wu H, Chen S, Li X, Zhang Z, Cheng Y, Chen Y, He M, An Q, Man C, Du L, Chen Q, Wang F. Bovine skin fibroblasts mediated immune responses to defend against bovine Acinetobacter baumannii infection. Microb Pathog 2022; 173:105806. [PMID: 36179976 DOI: 10.1016/j.micpath.2022.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen which can cause pneumonia, sepsis and infections of skin and soft tissue. The host mostly relies on innate immune responses to defend against the infection of A. baumannii. Currently, it has been confirmed that fibroblasts involved in innate immune responses. Therefore, to explore how bovine skin fibroblasts mediated immune responses to defend against A. baumannii infection, we analyzed the differential transcripts data of bovine skin fibroblasts infected with bovine A. baumannii by RNA-sequencing (RNA-seq). We found that there were 3014 differentially expressed genes (DEGs) at 14h with bovine A. baumannii infection, including 1940 up-regulated genes and 1074 down-regulated genes. Gene Ontology (GO) enrichment showed that ubiquitin protein ligase binding, IL-6 receptor complex, ERK1 and ERK2 cascade terms were mainly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that innate immune pathways were significantly enriched, such as TNF, IL-17, NLR, MAPK, NF-κB, endocytosis, apoptosis and HIF-1 signaling pathways. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed that GO terms such as chemokine receptor binding and Th17 cell differentiation and KEGG pathways such as TLR and cytokine-cytokine receptor interaction pathways were up-regulated. In addition, CASP3 and JUN were the core functional genes of apoptosis, while IL-6, ERBB2, EGFR, CHUK and MAPK8 were the core functional genes of immunity by Protein-Protein Interaction (PPI) analysis. Our study provided an in-depth understanding of the molecular mechanisms of fibroblasts against A. baumannii infection. It also lays the foundation for the development of new therapeutic targets for the diseases caused by A. baumannii infection and formulates effective therapeutic strategies for the prevention and control of the diseases caused by A. baumannii.
Collapse
Affiliation(s)
- Simeng Hou
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Haotian Wu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Xubo Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Meirong He
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
13
|
BauA and Omp34 surface loops trigger protective antibodies against Acinetobacter baumannii in a murine sepsis model. Int Immunopharmacol 2022; 108:108731. [DOI: 10.1016/j.intimp.2022.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
|
14
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res 2021; 14:2647-2666. [PMID: 34188515 PMCID: PMC8235951 DOI: 10.2147/jir.s308177] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of pro-inflammatory cell death. Compared with autophagy and apoptosis, pyroptosis has unique characteristics in morphology and mechanism. Specifically, pyroptosis is a kind of cell lysis mediated by the Gasdermin family, releases inflammatory cytokines IL-1β and IL-18. There are three different forms of mechanism, which are caspase-1-mediated, caspase-4/5/11-mediated and caspase-3-mediated. A large number of studies have proved that pyroptosis is closely related to cardiovascular disease. This paper reviewed the recent progress in the related research on pyroptosis and myocardial infarction, ischemia-reperfusion, atherosclerosis, diabetic cardiomyopathy, arrhythmia, heart failure hypertension and Kawasaki disease. Therefore, we believe that pyroptosis may be a new therapeutic target in the cardiovascular field.
Collapse
Affiliation(s)
- Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| |
Collapse
|
15
|
Li Y, Peng C, Zhao D, Liu L, Guo B, Shi M, Xiao Y, Yu Z, Yu Y, Sun B, Wang W, Lin J, Yang X, Shao S, Zhang X. Outer membrane protein A inhibits the degradation of caspase-1 to regulate NLRP3 inflammasome activation and exacerbate the Acinetobacter baumannii pulmonary inflammation. Microb Pathog 2021; 153:104788. [PMID: 33571624 DOI: 10.1016/j.micpath.2021.104788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii), one of the major pathogens that causes severe nosocomial infections, is characterised by a high prevalence of drug resistance. It has been reported that A. baumannii triggers the NOD-like receptor 3 (NLRP3) inflammasome, but the role of its virulence-related outer membrane protein A (ompA) remains unclear. Therefore, this study aimed to explore the effects of ompA on the NLRP3 inflammasome and its underlying molecular mechanisms. Results showed that ompA enhanced inflammatory damage, which was reduced as a result of knockout of the ompA gene. Additionally, ompA-stimulated expression of NLRP3 inflammasome was significantly blocked by silencing caspase-1, but activation of NLRP3 inflammasome was not altered after silencing ASC; this indicated that ompA was dependent on the caspase-1 pathway to activate the inflammatory response. Simultaneously, the wild-type (WT) strains triggered NLRP3 inflammasome after inhibition of caspase-1 degradation by proteasome inhibitor MG-132, aggravating tissue damage. These findings indicated that ompA may be dependent on the caspase-1 pathway to enhance inflammation and exacerbate tissue damage. Taken together, these results confirmed a novel capsase-1-modulated mechanism underpinning ompA activity, which further reveals the NLRP3 inflammasome pathway as a potential immunomodulatory target against A. baumannii infections.
Collapse
Affiliation(s)
- Yumei Li
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Chunhong Peng
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Dan Zhao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Laibing Liu
- Department of Neurosurgery, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingjun Shi
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ying Xiao
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zijiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Yan Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jieru Lin
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Songjun Shao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Xiangyan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
16
|
Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Deficiency of mitochondrial outer membrane protein 64 confers rice resistance to both piercing-sucking and chewing insects in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1967-1982. [PMID: 32542992 DOI: 10.1111/jipb.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The brown planthopper (BPH) and striped stem borer (SSB) are the most devastating insect pests in rice (Oryza sativa) producing areas. Screening for endogenous resistant genes is the most practical strategy for rice insect-resistance breeding. Forty-five mutants showing high resistance against BPH were identified in a rice T-DNA insertion population (11,000 putative homozygous lines) after 4 years of large-scale field BPH-resistance phenotype screening. Detailed analysis showed that deficiency of rice mitochondrial outer membrane protein 64 (OM64) gene resulted in increased resistance to BPH. Mitochondrial outer membrane protein 64 protein is located in the outer mitochondrial membrane by subcellular localization and its deficiency constitutively activated hydrogen peroxide (H2 O2 ) signaling, which stimulated antibiosis and tolerance to BPH. The om64 mutant also showed enhanced resistance to SSB, a chewing insect, which was due to promotion of Jasmonic acid biosynthesis and related responses. Importantly, om64 plants presented no significant changes in rice yield-related characters. This study confirmed OM64 as a negative regulator of rice herbivore resistance through regulating H2 O2 production. Mitochondrial outer membrane protein 64 is a potentially efficient candidate to improve BPH and SSB resistance through gene deletion. Why the om64 mutant was resistant to both piercing-sucking and chewing insects via a gene deficiency in mitochondria is discussed.
Collapse
Affiliation(s)
- Hui-Min Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Chao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xue-Xia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
17
|
Uppalapati SR, Sett A, Pathania R. The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Front Microbiol 2020; 11:589234. [PMID: 33123117 PMCID: PMC7573547 DOI: 10.3389/fmicb.2020.589234] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Of all the ESKAPE pathogens, carbapenem-resistant and multidrug-resistant Acinetobacter baumannii is the leading cause of hospital-acquired and ventilator-associated pneumonia. A. baumannii infections are notoriously hard to eradicate due to its propensity to rapidly acquire multitude of resistance determinants and the virulence factor cornucopia elucidated by the bacterium that help it fend off a wide range of adverse conditions imposed upon by host and environment. One such weapon in the arsenal of A. baumannii is the outer membrane protein (OMP) compendium. OMPs in A. baumannii play distinctive roles in facilitating the bacterial acclimatization to antibiotic- and host-induced stresses, albeit following entirely different mechanisms. OMPs are major immunogenic proteins in bacteria conferring bacteria host-fitness advantages including immune evasion, stress tolerance, and resistance to antibiotics and antibacterials. In this review, we summarize the current knowledge of major A. baumannii OMPs and discuss their versatile role in antibiotic resistance and virulence. Specifically, we explore how OmpA, CarO, and OprD-like porins mediate antibiotic and amino acid shuttle and host virulence.
Collapse
Affiliation(s)
- Siva R Uppalapati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Abhiroop Sett
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
18
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
19
|
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection. Front Immunol 2020; 11:1649. [PMID: 32922385 PMCID: PMC7457135 DOI: 10.3389/fimmu.2020.01649] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are inevitable sources for the generation of mitochondrial reactive oxygen species (mtROS) due to their fundamental roles in respiration. mtROS were reported to be bactericidal weapons with an innate effector function during infection. However, the controlled generation of mtROS is vital for the induction of efficient immune responses because excessive production of mtROS with mitochondrial damage leads to sustained inflammation, resulting in pathological outcomes such as sepsis. Here, we discuss the beneficial and detrimental roles of mtROS in the innate immune system during bacterial, viral, and fungal infections. Recent evidence suggests that several pathogens have evolved multiple strategies to modulate mtROS for their own benefit. We are just beginning to understand the mechanisms by which mtROS generation is regulated and how mtROS affect protective and pathological responses during infection. Several agents/small molecules that prevent the uncontrolled production of mtROS are known to be beneficial in the maintenance of tissue homeostasis during sepsis. mtROS-targeted approaches need to be incorporated into preventive and therapeutic strategies against a variety of infections.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
20
|
Pagano C, Marinozzi M, Baiocchi C, Beccari T, Calarco P, Ceccarini MR, Chielli M, Orabona C, Orecchini E, Ortenzi R, Ricci M, Scuota S, Tiralti MC, Perioli L. Bioadhesive Polymeric Films Based on Red Onion Skins Extract for Wound Treatment: An Innovative and Eco-Friendly Formulation. Molecules 2020; 25:molecules25020318. [PMID: 31941100 PMCID: PMC7024171 DOI: 10.3390/molecules25020318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The onion non-edible outside layers represent a widely available waste material deriving from its processing and consumption. As onion is a vegetable showing many beneficial properties for human health, a study aiming to evaluate the use of extract deriving from the non-edible outside layers was planned. An eco-friendly extraction method was optimized using a hydroalcoholic solution as solvent. The obtained extract was deeply characterized by in vitro methods and then formulated in autoadhesive, biocompatible and pain-free hydrogel polymeric films. The extract, very soluble in water, showed antioxidant, radical scavenging, antibacterial and anti-inflammatory activities, suggesting a potential dermal application for wounds treatment. In vitro studies showed a sustained release of the extract from the hydrogel polymeric film suitable to reach concentrations necessary for both antibacterial and anti-inflammatory activities. Test performed on human keratinocytes showed that the formulation is safe suggesting that the projected formulation could be a valuable tool for wound treatment.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Claudio Baiocchi
- Department of Molecular Biotechnology and Health Sciences, Sect. Analytical Chemistry, Via Pietro Giuria 5, 10125 Torino, Italy;
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Paola Calarco
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Michela Chielli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Ciriana Orabona
- Department of Experimental Medicine, Sect. Pharmacology, University of Perugia, P.le L. Severi 1, Bld C/4th floor, 06132 Perugia, Italy; (C.O.); (E.O.)
| | - Elena Orecchini
- Department of Experimental Medicine, Sect. Pharmacology, University of Perugia, P.le L. Severi 1, Bld C/4th floor, 06132 Perugia, Italy; (C.O.); (E.O.)
| | - Roberta Ortenzi
- Istituto Zooprofilattico dell’Umbria e delle Marche, via G. Salvemini, 1, 06126 Perugia, Italy; (R.O.); (S.S.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Stefania Scuota
- Istituto Zooprofilattico dell’Umbria e delle Marche, via G. Salvemini, 1, 06126 Perugia, Italy; (R.O.); (S.S.)
| | - Maria Cristina Tiralti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (C.P.); (M.M.); (T.B.); (P.C.); (M.R.C.); (M.C.); (M.R.); (M.C.T.)
- Correspondence: ; Tel.: +39-075-585-5133 or +39-075-585-5123
| |
Collapse
|
21
|
Huang W, Zhang Q, Li W, Chen Y, Shu C, Li Q, Zhou J, Ye C, Bai H, Sun W, Yang X, Ma Y. Anti-outer Membrane Vesicle Antibodies Increase Antibiotic Sensitivity of Pan-Drug-Resistant Acinetobacter baumannii. Front Microbiol 2019; 10:1379. [PMID: 31275290 PMCID: PMC6591364 DOI: 10.3389/fmicb.2019.01379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii often causes serious nosocomial infections. Because of its serious drug resistance problems, complex drug resistance mechanism, and rapid adaptation to antibiotics, it often shows pan-drug resistance and high fatality rates, which represent great challenges for clinical treatment. Therefore, identifying new ways to overcome antibiotic resistance is particularly important. In this study, mice immunized with A. baumannii outer membrane vesicles (AbOMVs) produced high IgG levels for a long time, and this antiserum significantly increased the small molecule intracellular aggregation rate and concentrations. In vitro experiments demonstrated that the combined used of anti-AbOMV serum and quinolone antibiotics significantly increased the sensitivity of the bacteria to these antibiotics. Mouse sepsis model experiments demonstrated that delivery of these antibodies using both active and passive immunization strategies significantly improved the susceptibility to quinolone antibiotics, improved the survival rate of mice infected with A. baumannii, and reduced the bacterial load in the organs. In a pneumonia model, the combination of serum anti-AbOMVs and levofloxacin improved levofloxacin sensitivity, which significantly reduced the bacterial loads in the lung and spleen compared with those of the antibiotic or antibody alone. This combination also significantly reduced lung inflammatory cell infiltration and inflammatory cytokine aggregation. In this study, the main protein targets that bound to these antibodies were identified. Structural modeling showed that seven of the proteins were porins. Therefore, we speculated that the anti-AbOMV antibodies mainly improved the intracellular aggregation of antibiotics by affecting porins, thus improving susceptibility to quinolone antibiotics. This study provides a method to improve susceptibility to existing antibiotics and a novel idea for the prevention and treatment of pan-drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qishu Zhang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yongjun Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Congyan Shu
- Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxian Zhou
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|