1
|
Li Y, Si H, Ma Y, Li S, Gao L, Liu K, Liu X. Vitamin D3 affects the gut microbiota in an LPS-stimulated systemic inflammation mouse model. Microbes Infect 2023; 25:105180. [PMID: 37419238 DOI: 10.1016/j.micinf.2023.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Although gut dysbiosis contributes to systemic inflammation, the counteractive effect of systemic inflammation on gut microbiota is unknown. Vitamin D may exert anti-inflammatory effects against systemic inflammation, but its regulation of the gut microbiota is poorly understood. In this study, mice were intraperitoneally injected with lipopolysaccharide (LPS) to create a systemic inflammation model and received vitamin D3 treatment orally for 18 continuous days. Then, body weight, morphological changes in the colon epithelium, and gut microbiota (n = 3) were evaluated. We verified that LPS stimulation caused inflammatory changes in the colon epithelium, which could be obviously attenuated by vitamin D3 treatment (10 μg/kg/day) in mice. Then, 16S rRNA gene sequencing of the gut microbiota first revealed that LPS stimulation induced a large number of operational taxonomic units, and vitamin D3 treatment reduced the number. In addition, vitamin D3 had distinctive effects on the community structure of the gut microbiota, which was obviously changed after LPS stimulation. However, neither LPS nor vitamin D3 affected the alpha and beta diversity of the gut microbiota. Furthermore, statistical analysis of differential microorganisms showed that the relative abundance of microorganisms in the phylum Spirochaetes decreased, the family Micrococcaceae increased, the genus [Eubacterium]_brachy_group decreased, the genus Pseudarthrobacter increased, and the species Clostridiales_bacterium_CIEAF_020 decreased under LPS stimulation, but vitamin D3 treatment significantly reversed the LPS-induced changes in the relative abundance of these microorganisms. In conclusion, vitamin D3 treatment affected the gut microbiota and alleviated inflammatory changes in the colon epithelium in the LPS-stimulated systemic inflammation mouse model.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Hongbo Si
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Shuang Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China.
| |
Collapse
|
2
|
Zheng C, Chen J, Wu Y, Wang X, Lin Y, Shu L, Liu W, Wang P. Elucidating the role of ubiquitination and deubiquitination in osteoarthritis progression. Front Immunol 2023; 14:1217466. [PMID: 37359559 PMCID: PMC10288844 DOI: 10.3389/fimmu.2023.1217466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis is non-inflammatory degenerative joint arthritis, which exacerbates disability in elder persons. The molecular mechanisms of osteoarthritis are elusive. Ubiquitination, one type of post-translational modifications, has been demonstrated to accelerate or ameliorate the development and progression of osteoarthritis via targeting specific proteins for ubiquitination and determining protein stability and localization. Ubiquitination process can be reversed by a class of deubiquitinases via deubiquitination. In this review, we summarize the current knowledge regarding the multifaceted role of E3 ubiquitin ligases in the pathogenesis of osteoarthritis. We also describe the molecular insight of deubiquitinases into osteoarthritis processes. Moreover, we highlight the multiple compounds that target E3 ubiquitin ligases or deubiquitinases to influence osteoarthritis progression. We discuss the challenge and future perspectives via modulation of E3 ubiquitin ligases and deubiquitinases expression for enhancement of the therapeutic efficacy in osteoarthritis patients. We conclude that modulating ubiquitination and deubiquitination could alleviate the osteoarthritis pathogenesis to achieve the better treatment outcomes in osteoarthritis patients.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Yurui Wu
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaochao Wang
- Department of Orthopaedics, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongan Lin
- South China University of Technology, Guangzhou, Guangdong, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xu M, Tan J, Zhu L, Ge C, Dong W, Dai X, Kuang Q, Zhong S, Lai L, Yi C, Li Q, Lou D, Hu L, Liu X, Kuang G, Luo J, Feng J, Wang B. The deubiquitinating enzyme 13 retards non-alcoholic steatohepatitis via blocking inactive rhomboid protein 2-dependent pathway. Acta Pharm Sin B 2023; 13:1071-1092. [PMID: 36970206 PMCID: PMC10031279 DOI: 10.1016/j.apsb.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Nowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood. In this work, we identify the ubiquitin-specific protease 13 (USP13) as a critical and novel endogenous blocker of IRHOM2, and we also indicate that USP13 is an IRHOM2-interacting protein that catalyzes deubiquitination of Irhom2 in hepatocytes. Hepatocyte-specific loss of the Usp13 disrupts liver metabolic homeostasis, followed by glycometabolic disorder, lipid deposition, increased inflammation, and markedly promotes NASH development. Conversely, transgenic mice with Usp13 overexpression, lentivirus (LV)- or adeno-associated virus (AAV)-driven Usp13 gene therapeutics mitigates NASH in 3 models of rodent. Mechanistically, in response to metabolic stresses, USP13 directly interacts with IRHOM2 and removes its K63-linked ubiquitination induced by ubiquitin-conjugating enzyme E2N (UBC13), a ubiquitin E2 conjugating enzyme, and thus prevents its activation of downstream cascade pathway. USP13 is a potential treatment target for NASH therapy by targeting the Irhom2 signaling pathway.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Wei Dong
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, China
| | - Jing Feng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
4
|
Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y, Jia Z. Role of USP13 in physiology and diseases. Front Mol Biosci 2022; 9:977122. [PMID: 36188217 PMCID: PMC9515447 DOI: 10.3389/fmolb.2022.977122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin specific protease (USP)-13 is a deubiquitinase that removes ubiquitin from substrates to prevent protein degradation by the proteasome. Currently, the roles of USP13 in physiology and pathology have been reported. In physiology, USP13 is highly associated with cell cycle regulation, DNA damage repair, myoblast differentiation, quality control of the endoplasmic reticulum, and autophagy. In pathology, it has been reported that USP13 is important in the pathogenesis of infection, inflammation, idiopathic pulmonary fibrosis (IPF), neurodegenerative diseases, and cancers. This mini-review summarizes the most recent advances in USP13 studies involving its pathophysiological roles in different conditions and provides new insights into the prevention and treatment of relevant diseases, as well as further research on USP13.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|