1
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Zebrafish larvae as a model for studying the impact of oral bacterial vesicles on tumor cell growth and metastasis. Hum Cell 2024; 37:1696-1705. [PMID: 39138804 PMCID: PMC11481661 DOI: 10.1007/s13577-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Oral bacteria naturally secrete extracellular vesicles (EVs), which have attracted attention for their promising biomedical applications including cancer therapeutics. However, our understanding of EV impact on tumor progression is hampered by limited in vivo models. In this study, we propose a facile in vivo platform for assessing the effect of EVs isolated from different bacterial strains on oral cancer growth and dissemination using the larval zebrafish model. EVs were isolated from: wild-type Aggregatibacter actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; and wild-type Porphyromonas gingivalis. Cancer cells pretreated with EVs were xenotransplanted into zebrafish larvae, wherein tumor growth and metastasis were screened. We further assessed the preferential sites for the metastatic foci development. Interestingly, EVs from the CDT-lacking A. actinomycetemcomitans resulted in an increased tumor growth, whereas EVs lacking the lipopolysaccharide O-antigen reduced the metastasis rate. P. gingivalis-derived EVs showed no significant effects. Cancer cells pretreated with EVs from the mutant A. actinomycetemcomitans strains tended to metastasize less often to the head and tail compared to the controls. In sum, the proposed approach provided cost- and labor-effective yet efficient model for studying bacterial EVs in oral carcinogenesis, which can be easily extended for other cancer types. Furthermore, our results support the notion that these nanosized particles may represent promising targets in cancer therapeutics.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Saika Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Moe KT, Tan KSW. Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer. Cancers (Basel) 2024; 16:3305. [PMID: 39409925 PMCID: PMC11475040 DOI: 10.3390/cancers16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide, and its two major types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), present a severe global public health problem with an increasing incidence and mortality. Established risk factors include smoking, alcohol consumption, and dietary habits, but recent research has highlighted the substantial role of oral microbiota in EC pathogenesis. This review explores the intricate relationship between the microbiome and esophageal carcinogenesis, focusing on the following eight significant mechanisms: chronic inflammation, microbial dysbiosis, production of carcinogenic metabolites, direct interaction with epithelial cells, epigenetic modifications, interaction with gastroesophageal reflux disease (GERD), metabolic changes, and angiogenesis. Certain harmful bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are specifically implicated in sustaining irritation and tumor progression through pathways including NF-κB and NLRP3 inflammasome. Additionally, the review explores how microbial byproducts, including short-chain fatty acids (SCFAs) and reactive oxygen species (ROS), contribute to DNA harm and disease advancement. Furthermore, the impact of reflux on microbiota composition and its role in esophageal carcinogenesis is evaluated. By combining epidemiological data with mechanistic understanding, this review underscores the potential to target the microbiota-immune system interplay for novel therapeutic and diagnostic strategies to prevent and treat esophageal cancer.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Biomedical Sciences, Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Health Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| |
Collapse
|
3
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
4
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Acharya S, Hegde U, Acharya AB, Nitin P. Dysbiosis linking periodontal disease and oral squamous cell carcinoma-A brief narrative review. Heliyon 2024; 10:e32259. [PMID: 38947439 PMCID: PMC11214465 DOI: 10.1016/j.heliyon.2024.e32259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
An association between periodontal disease and oral squamous cell carcinoma (OSCC) has been recognized. However, there is no causal relationship between the two. The polymicrobial etiology of periodontal disease is confirmed, and so are the proven etiological factors for OSCC. Inflammation lies at the core of periodontal pathogenesis induced by the putative microbes. OSCC has inflammatory overtures in its pathobiology. Bacterial species involved in periodontal disease have been extensively documented and validated. The microbial profile in OSCC has been explored with no specific conclusions. The scientific reasoning to link a common microbial signature that connects periodontal disease to OSCC has led to many studies but has not provided conclusive evidence. Therefore, it would be beneficial to know the status of any plausible microbiota having a similarity in periodontal disease and OSCC. This brief review attempted to clarify the existence of a dysbiotic "fingerprint" that may link these two diseases. The review examined the literature with a focused objective of identifying periodontal microbial profiles in OSCC that could provide insights into pathogen commonality. The review concluded that there is great diversity in microbial association, but important bacterial species that correlate with periodontal disease and OSCC are forthcoming.
Collapse
Affiliation(s)
- Swetha Acharya
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| | - Usha Hegde
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| | - Anirudh B. Acharya
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Priyanka Nitin
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| |
Collapse
|
6
|
Lu Z, Cao R, Geng F, Pan Y. Persistent infection with Porphyromonas gingivalis increases the tumorigenic potential of human immortalised oral epithelial cells through ZFP36 inhibition. Cell Prolif 2024; 57:e13609. [PMID: 38351596 PMCID: PMC11150143 DOI: 10.1111/cpr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 06/06/2024] Open
Abstract
The association between Porphyromonas gingivalis infection and oral squamous cell carcinoma (OSCC) has been established by numerous epidemiological studies. However, the underlying mechanism specific to this connection remains unclear. By bioinformatical analysis, we identified ZFP36 as a potentially significant co-expressed gene in both the OSCC gene database and the persistent infection model of P. gingivalis. To further investigate the role of ZFP36, we established a cell model that human immortalized oral epithelial cells (HIOECs) that were sustainedly infected by P. gingivalis (MOI = 1) for a duration of 30 weeks. Our findings indicated that sustained infection with P. gingivalis inhibited the expression of ZFP36 protein and induced changes in the biological behaviour of HIOECs. The mechanism investigation demonstrated the potential role of ZFP36 in regulating the cancer-related biological behaviour of HIOECs. Subsequent studies revealed that highly expressed CCAT1 could serve as a molecular scaffold in the formation of the ZFP36/CCAT1/MK2 complex. This complex formation enhanced the binding abundance of MK2 and ZFP36, thereby promoting the inhibition of ZFP36 protein phosphorylation. To summarize, low expression of ZFP36 protein under persistent P. gingivalis infection enhances the cancer-related biological behaviour of HIOECs.
Collapse
Affiliation(s)
- Ze Lu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Ruoyan Cao
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Fengxue Geng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
7
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
8
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Extracellular vesicles from Aggregatibacter actinomycetemcomitans exhibit potential antitumorigenic effects in oral cancer: a comparative in vitro study. Arch Microbiol 2024; 206:244. [PMID: 38702412 PMCID: PMC11068833 DOI: 10.1007/s00203-024-03976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
9
|
Guo ZC, Jing SL, Jia XY, Elayah SA, Xie LY, Cui H, Tu JB, Na SJ. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment. Inflamm Res 2024; 73:693-705. [PMID: 38150024 DOI: 10.1007/s00011-023-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Si-Li Jing
- Shannxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Xin-Yu Jia
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sadam Ahmed Elayah
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jiblah University for Medical and Health Sciences, Ibb, Yemen
| | - Lin-Yang Xie
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao Cui
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jun-Bo Tu
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Si-Jia Na
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
10
|
Chen G, Gao C, Jiang S, Cai Q, Li R, Sun Q, Xiao C, Xu Y, Wu B, Zhou H. Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis. J Adv Res 2024; 56:167-179. [PMID: 37059221 PMCID: PMC10834801 DOI: 10.1016/j.jare.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
INTRODUCTION Metastasis is an important cause of high mortality and lethality of oral cancer. Fusobacterium nucleatum (Fn) can promote tumour metastasis. Outer membrane vesicles (OMVs) are secreted by Fn. However, the effects of Fn-derived extracellular vesicles on oral cancer metastasis and the underlying mechanisms are unclear. OBJECTIVES We aimed to determine whether and how Fn OMVs mediate oral cancer metastasis. METHODS OMVs were isolated from brain heart infusion (BHI) broth supernatant of Fn by ultracentrifugation. Tumour-bearing mice were treated with Fn OMVs to evaluate the effect of OMVs on cancer metastasis. Transwell assays were performed to determine how Fn OMVs affect cancer cell migration and invasion. The differentially expressed genes in Fn OMV-treated/untreated cancer cells were identified by RNA-seq. Transmission electron microscopy, laser confocal microscopy, and lentiviral transduction were used to detect changes in autophagic flux in cancer cells stimulated with Fn OMVs. Western blotting assay was performed to determine changes in EMT-related marker protein levels in cancer cells. Fn OMVs' effects on migration after blocking autophagic flux by autophagy inhibitors were determined by in vitro and in vivo experiments. RESULTS Fn OMVs were structurally similar to vesicles. In the in vivo experiment, Fn OMVs promoted lung metastasis in tumour-bearing mice, while chloroquine (CHQ, an autophagy inhibitor) treatment reduced the number of pulmonary metastases resulting from the intratumoral Fn OMV injection. Fn OMVs promoted the migration and invasion of cancer cells in vivo, leading to altered expression levels of EMT-related proteins (E-cadherin downregulation; Vimentin/N-cadherin upregulation). RNA-seq showed that Fn OMVs activate intracellular autophagy pathways. Blocking autophagic flux with CHQ reduced in vitro and in vivo migration of cancer cells induced by Fn OMVs as well as reversed changes in EMT-related protein expression. CONCLUSION Fn OMVs not only induced cancer metastasis but also activated autophagic flux. Blocking autophagic flux weakened Fn OMV-stimulated cancer metastasis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China; Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chunna Gao
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shan Jiang
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China
| | - Qiaoling Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
11
|
Liu Z, Ma Y, Ye J, Li G, Kang X, Xie W, Wang X. Drug delivery systems for enhanced tumour treatment by eliminating intra-tumoral bacteria. J Mater Chem B 2024; 12:1194-1207. [PMID: 38197141 DOI: 10.1039/d3tb02362a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cancer remains one of the serious threats to human health. The relationship between bacteria and various tumours has been widely reported in recent years, and studies on intra-tumoral bacteria have become important as intra-tumoral bacteria directly affect the tumorigenesis, progression, immunity and metastatic processes. Therefore, eliminating these commensal intra-tumoral bacteria while treating tumour is expected to be a potential strategy to further enhance the clinical outcome of tumour therapy. Drug delivery systems (DDSs) are widely used to deliver antibiotics and chemotherapeutic drugs for antibacterial and anticancer applications, respectively. Thus, this review firstly provides a comprehensive summary of the association between intra-tumoral bacteria and a host of tumours, followed by a description of advanced DDSs for improving the therapeutic efficacy of cancer treatment through the elimination of intra-tumoral bacteria. It is hoped that this review will provide guidelines for the therapeutic and "synergistic antimicrobial and antitumour" drug delivery strategy.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yige Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinxin Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Olek M, Machorowska-Pieniążek A, Czuba ZP, Cieślar G, Kawczyk-Krupka A. Immunomodulatory Effect of Hypericin-Mediated Photodynamic Therapy on Oral Cancer Cells. Pharmaceutics 2023; 16:42. [PMID: 38258051 PMCID: PMC10819034 DOI: 10.3390/pharmaceutics16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
In 2020, there were 377,713 new oral and lip cancer diagnoses and 177,757 deaths. Oral cancer is a malignancy of the head and neck region, and 90% of cases are squamous cell carcinomas (OSCCs). One of the alternative methods of treating pre-cancerous lesions and oral cancer is photodynamic therapy (PDT). In addition to the cytotoxic effect, an important mechanism of PDT action is the immunomodulatory effect. This study used the OSCC (SCC-25) cell line and the healthy gingival fibroblast (HGF-1) line. A compound of natural origin-hypericin (HY)-was used as the photosensitizer (PS). The HY concentrations of 0-1 µM were used. After two hours of incubation with PS, the cells were irradiated with light doses of 0-20 J/cm2. The MTT test determined sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for interleukin 6 (IL-6), soluble IL-6 receptor alpha (sIL-6Ralfa), sIL-6Rbeta, IL-8, IL-10, IL-11 IL-20, IL-32, and Pentraxin-3 using the Bio-Plex ProTM Assay. The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with increasing HY concentration and a light dose. HY-PDT affected the SCC-25 cell secretion of sIL-6Rbeta, IL-20, and Pentraxin-3. HY alone increased IL-8 secretion. In the case of HGF-1, the effect of HY-PDT on the secretion of IL-8 and IL-32 was found.
Collapse
Affiliation(s)
- Marcin Olek
- Doctoral School of Medical University of Silesia, 40-055 Katowice, Poland
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | | | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
13
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Desai S. Influence of pathogens on host genome and epigenome in development of head and neck cancer. Cancer Rep (Hoboken) 2023; 6:e1846. [PMID: 37322598 PMCID: PMC10644332 DOI: 10.1002/cnr2.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNSCC) is a heterogeneous group of cancers, affecting multiple regions such as oral cavity, pharynx, larynx, and nasal region, each showing a distinct molecular profile. HNSCC accounts for more than 6 million cases worldwide, soaring mainly in the developing countries. RECENT FINDINGS The aetiology of HNSCC is complex and multifactorial, involving both genetic and environmental factors. The critical role of microbiome, which includes bacteria, viruses, and fungi, is under spotlight due to the recent reports on their contribution in the development and progression of HNSCC. This review focuses on the effect of opportunistic pathogens on the host genome and epigenome, which contributes to the disease progression. Drawing parallels from the host-pathogen interactions observed in other tumour types arising from the epithelial tissue such as colorectal cancer, the review also calls attention to the potential explorations of the role of pathogens in HNSCC biology and discusses the clinical implications of microbiome research in detection and treatment of HNSCC. CONCLUSION Our understanding of the genomic effects of the microbes on the disease progression and the mechanistic insights of the host-pathogen interaction will pave way to novel treatment and preventive approaches in HNSCC.
Collapse
|
15
|
Yao C, Lan D, Li X, Wang Y, Qi S, Liu Y. Porphyromonas gingivalis is a risk factor for the development of nonalcoholic fatty liver disease via ferroptosis. Microbes Infect 2023; 25:105040. [PMID: 35987459 DOI: 10.1016/j.micinf.2022.105040] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disease that can eventually lead to liver cirrhosis and hepatocellular carcinoma. Porphyromonas gingivalis (P.g) is the main pathogen that causes periodontal disease, which participates in the development of NAFLD. The purpose of our study was to further study the direct role of P.g in NAFLD and the underlying molecular mechanism. An animal model of oral P.g administration was established, and liver function and pathology in this model were evaluated. The gut microbiome and metabolic products were analysed. Furthermore, the Th17/Treg balance in the spleen and liver was assessed. In our study, NAFLD was observed in all the mice that were orally administered P.g. The gut microbiome and metabolic products were altered after oral P.g administration. P.g and ferroptosis were observed in the livers of the mice after oral P.g administration. Additionally, ferroptosis was observed in hepatocytes in vitro, but it was reversed by ferroptosis inhibitors. In addition, P.g triggered an imbalance in the Th17/Treg ratio in the liver and spleen in vivo. These findings suggest that oral P.g administration directly induced NAFLD in mice, which may be dependent on the ferroptosis of liver cells that occurs through the Th17/Treg imbalance induced by disordered microbial metabolism. Therefore, improving the periodontal environment is a novel treatment strategy for preventing NAFLD.
Collapse
Affiliation(s)
- Chao Yao
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Medical College, Anhui University of Science and Technology, Huainan, China
| | - Dongmei Lan
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Medical College, Anhui University of Science and Technology, Huainan, China
| | - Xue Li
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Medical College, Anhui University of Science and Technology, Huainan, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Shengcai Qi
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Medical College, Anhui University of Science and Technology, Huainan, China.
| | - Yuehua Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|