1
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
2
|
Etty MC, D'Auria S, Fraschini C, Salmieri S, Lacroix M. Effect of the optimized selective enrichment medium on the expression of the p60 protein used as Listeria monocytogenes antigen in specific sandwich ELISA. Res Microbiol 2019; 170:182-191. [DOI: 10.1016/j.resmic.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
3
|
Pitts MG, D'Orazio SEF. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens 2018; 7:pathogens7010013. [PMID: 29361677 PMCID: PMC5874739 DOI: 10.3390/pathogens7010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| |
Collapse
|
4
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
5
|
Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C, Sismeiro O, Semenova E, Severinov K, Le Bouguenec C, Coppée JY, Dupuy B, Martin-Verstraete I. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003493. [PMID: 23675309 PMCID: PMC3649979 DOI: 10.1371/journal.pgen.1003493] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen. The emergent human pathogen Clostridium difficile is a major cause of nosocomial diarrhea associated with antibiotic therapy. During the last few years, severe forms of C. difficile infections became more frequent due to the emergence of hypervirulent isolates. Despite intensive studies, many questions regarding the mechanisms controlling C. difficile virulence remain unanswered. We hypothesized that C. difficile, a member of an ancient group of bacteria, might widely use ancestral RNA–based mechanisms to control its gene expression for better adaptation to host conditions. Indeed, using next-generation sequencing technology, we identified a great number and a large diversity of potential RNA regulators in this pathogen. We obtained experimental evidence for regulatory roles of a particular class of regulatory RNAs responding to c-di-GMP, a universal bacterial signaling molecule regulating motility, biofilm formation, and virulence. We also detected abundant small RNA products of recently discovered adaptive prokaryotic immunity CRISPR-Cas systems that might be important for C. difficile survival in gut communities. Our findings suggest that small RNA molecules may play a major role in regulatory processes during C. difficile infection cycle and as such are promising targets of new therapeutic strategies.
Collapse
Affiliation(s)
- Olga A Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Studies on the pathogenesis and survival of different culture forms of Listeria monocytogenes to pulsed UV-light irradiation after exposure to mild-food processing stresses. Food Microbiol 2012; 30:330-9. [DOI: 10.1016/j.fm.2011.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 12/22/2022]
|
7
|
Stackhouse RR, Faith NG, Kaspar CW, Czuprynski CJ, Wong ACL. Survival and virulence of Salmonella enterica serovar enteritidis filaments induced by reduced water activity. Appl Environ Microbiol 2012; 78:2213-20. [PMID: 22287000 PMCID: PMC3302626 DOI: 10.1128/aem.06774-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis strain E40 filaments were developed under conditions of a reduced water activity (a(w)) of 0.95 in tryptic soy broth (TSB) or tryptic soy agar (TSA) supplemented with 8% or 7% NaCl, respectively. Filament formation was accompanied by an increase of biomass without an increase in CFU and was affected by incubation temperature and the physical milieu. The greatest amount of filaments was recovered from TSA with 7% NaCl and incubation at 30°C. Within 2 h of transfer to fresh TSB, filaments started to septate into normal-sized cells, resulting in a rapid increase in CFU. S. Enteritidis E40 filaments were not more tolerant of low- or high-temperature stresses than nonfilamented control cells. However, there was greater survival of filaments in 10% bile salts after 24 to 48 h of incubation, during pH 2.0 acid challenge for 10 min, and under desiccation on stainless steel surfaces at 25°C and 75.5% relative humidity for 7 days. S. Enteritidis E40 filaments invaded and multiplied within Caco-2 human intestinal epithelial cells to a similar degree as control cells when a comparable CFU of filaments and control cells was used. S. Enteritidis E40 filaments established a successful infection in mice via intragastric inoculation. The filaments colonized the gastrointestinal tract and disseminated to the spleen and liver at levels comparable to those attained by control cells, even when animals were inoculated with 10- to 100-fold fewer CFU. To our knowledge this is the first demonstration of virulence of stress-induced Salmonella filaments in vitro and in vivo. Formation of filaments by Salmonella in food products and food processing environments is significant to food safety, because detection and quantitation of the pathogen may be compromised. The finding that these filaments are virulent further enhances their potential public health impact.
Collapse
Affiliation(s)
- Robert R. Stackhouse
- Department of Bacteriology, Food Research Institute
- Department of Pathobiological Sciences University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nancy G. Faith
- Department of Pathobiological Sciences University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Charles W. Kaspar
- Department of Bacteriology, Food Research Institute
- Department of Pathobiological Sciences University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Amy C. Lee Wong
- Department of Bacteriology, Food Research Institute
- Department of Pathobiological Sciences University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Actin polymerization drives septation of Listeria monocytogenes namA hydrolase mutants, demonstrating host correction of a bacterial defect. Infect Immun 2011; 79:1458-70. [PMID: 21263016 DOI: 10.1128/iai.01140-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Gram-positive bacterial cell wall presents a structural barrier that requires modification for protein secretion and large-molecule transport as well as for bacterial growth and cell division. The Gram-positive bacterium Listeria monocytogenes adjusts cell wall architecture to promote its survival in diverse environments that include soil and the cytosol of mammalian cells. Here we provide evidence for the enzymatic flexibility of the murein hydrolase NamA and demonstrate that bacterial septation defects associated with a loss of NamA are functionally complemented by physical forces associated with actin polymerization within the host cell cytosol. L. monocytogenes ΔnamA mutants formed long bacterial chains during exponential growth in broth culture; however, normal septation could be restored if mutant cells were cocultured with wild-type L. monocytogenes bacteria or by the addition of exogenous NamA. Surprisingly, ΔnamA mutants were not significantly attenuated for virulence in mice despite the pronounced exponential growth septation defect. The physical force of L. monocytogenes-mediated actin polymerization within the cytosol was sufficient to sever ΔnamA mutant intracellular chains and thereby enable the process of bacterial cell-to-cell spread so critical for L. monocytogenes virulence. The inhibition of actin polymerization by cytochalasin D resulted in extended intracellular bacterial chains for which septation was restored following drug removal. Thus, despite the requirement for NamA for the normal septation of exponentially growing L. monocytogenes cells, the hydrolase is essentially dispensable once L. monocytogenes gains access to the host cell cytosol. This phenomenon represents a notable example of eukaryotic host cell complementation of a bacterial defect.
Collapse
|
9
|
Bahey-El-Din M, Casey PG, Griffin BT, Gahan CGM. Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. J Med Microbiol 2010; 59:904-912. [PMID: 20488938 DOI: 10.1099/jmm.0.018770-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a food-borne intracellular pathogen that mainly infects pregnant and immunocompromised individuals. The pore-forming haemolysin listeriolysin O (LLO), the main virulence factor of Listeria monocytogenes, allows bacteria to escape from the harsh environment of the phagosome to the cytoplasm of the infected cell. This leads to processing of bacterial antigens predominantly through the cytosolic MHC class I presentation pathway. We previously engineered the food-grade bacterium Lactococcus lactis to express LLO and demonstrated an LLO-specific CD8(+) response upon immunization of mice with the engineered L. lactis vaccine strains. In the present work, we examined the immune response and protective efficacy of an L. lactis strain co-expressing LLO and a truncated form of the listerial P60 antigen (tP60). Oral immunization revealed no significant protection against listeriosis with L. lactis expressing LLO, tP60 or the combined LLO/tP60. In contrast, intraperitoneal vaccination induced an LLO-specific CD8(+) immune response with LLO-expressing L. lactis but no significant improvement in protection was observed following vaccination with the combined LLO/tP60 expressing L. lactis strain. This may be due to the low level of tP60 expression in the LLO/tP60 strain. These results demonstrate the necessity for improved oral vaccination strategies using LLO-expressing L. lactis vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Bahey-El-Din
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Egypt
- Department of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Pat G Casey
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Cormac G M Gahan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Faith N, Kathariou S, Cheng Y, Promadej N, Neudeck BL, Zhang Q, Luchansky J, Czuprynski C. The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice. Foodborne Pathog Dis 2010; 6:39-48. [PMID: 18991548 DOI: 10.1089/fpd.2008.0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotype 4b strains of Listeria monocytogenes have been responsible for most large outbreaks of listeriosis. In L. monocytogenes serotype 4b, gtcA and gltA have been implicated in serotype-specific glycosylation of the teichoic acid of the cell wall with galactose and glucose. In this study, we investigated the impact of mutations in gltA (resulting in absence of glucose on teichoic acid) and gtcA (resulting in absence of galactose, and markedly reduced glucose on teichoic acid) on virulence following intragastric infection of anesthetized A/J mice. The gltA mutant was not impaired in virulence in this model. In contrast, testing of gtcA mutants constructed in two different strains showed that the mutants were recovered in lower numbers than their respective parent strains from the spleen, liver, ceca, and gall bladders of intragastrically inoculated mice. Genetic complementation of the gtcA mutation partially restored gastrointestinal virulence. When mice were inoculated intravenously, the gtcA mutants were also recovered in lower numbers from the liver (for both mutant strains) and the spleen (for one mutant strain) than their respective parental strains. The mutants were also evaluated for invasion and intracellular multiplication in the Caco-2 human intestinal epithelial cell line. Inactivation of gltA did not affect invasion or intracellular growth of the bacteria. In contrast, gtcA mutants showed decreased invasion, but normal multiplication in Caco-2 cells. Overall, these data demonstrate a role for gtcA in the pathogenesis of gastrointestinal listeriosis in mice, and suggest that diminished ability of gtcA mutants to invade intestinal epithelial cells may be partly responsible for decreased gastrointestinal virulence.
Collapse
Affiliation(s)
- Nancy Faith
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
12
|
Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de Mann-Rogosa-Sharpe broth. Lett Appl Microbiol 2009; 48:618-22. [PMID: 19416463 DOI: 10.1111/j.1472-765x.2009.02579.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS To identify novel proteins secreted by the probiotic bacterium Lactobacillus rhamnosus GG after growth in de Mann-Rogosa-Sharpe broth (MRS), a complex medium often used for the culture of Lactobacillus. METHODS AND RESULTS The proteins secreted by L. rhamnosus GG strain were precipitated using a trichloroacetic acid-based protocol, resolved by SDS-PAGE, and identified by tandem mass spectrometry (MS/MS). Among the proteins secreted by this bacterium, a leukocyte elastase inhibitor, already present in the MRS broth, was identified. Other proteins such as cell wall hydrolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase, and an extracellular transcriptional regulator have been also identified. CONCLUSIONS Lactobacillus rhamnosus GG secretes several proteins during its growth in MRS, some of them with assigned functions in the prevention of the molecular mechanisms that lead to damage in the epithelial barrier (cell wall hydrolase) and in adhesion (GAPDH). The rest of the proteins require further genetic analysis in order to establish their precise roles. None of the proteins bound to mucin or fibronectin. SIGNIFICANCE AND IMPACT OF THE STUDY Some of these secreted proteins could be involved in the probiotic effects exerted by L. rhamnosus GG strain, their identification being the first step towards in depth functional studies.
Collapse
Affiliation(s)
- B Sánchez
- Université de Bordeaux, UMR 5248 CNRS, UBX1-ENITAB, ENITAB, Gradignan Cedex, France.
| | | | | |
Collapse
|
13
|
Sánchez B, Bressollier P, Chaignepain S, Schmitter JM, Urdaci MC. Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Furukawa A, Uchida K, Ishige Y, Ishige I, Kobayashi I, Takemura T, Yokoyama T, Iwai K, Watanabe K, Shimizu S, Ishida N, Suzuki Y, Suzuki T, Yamada T, Ito T, Eishi Y. Characterization of Propionibacterium acnes isolates from sarcoid and non-sarcoid tissues with special reference to cell invasiveness, serotype, and trigger factor gene polymorphism. Microb Pathog 2008; 46:80-7. [PMID: 19049821 DOI: 10.1016/j.micpath.2008.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 10/22/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown etiology. Propionibacterium acnes is the only microorganism so far isolated from sarcoid lesions. To examine whether P. acnes isolates from sarcoid tissues differ from those obtained from non-sarcoid tissues, we studied cell invasiveness, serotype, and polymorphisms of the P. acnes trigger factor protein and the two invasion-associated proteins (named PAmce and PAp60) in 35 P. acnes isolates from sarcoid lymph nodes and 127 isolates from non-sarcoid tissues. Most of the serotype I isolates (79/112; 71%), but none of the serotype II isolates (0/50) were cell-invasive. Two prominent types of trigger factors, one with and one without a 15 amino acid-residue deletion, corresponded to serotype II and serotype I, respectively. Non-invasive isolates had genomic mutations that caused more than one amino acid change in either the PAmce or PAp60 gene, with four exceptional isolates. P. acnes was finally classified into nine isotypes, and isolates obtained from sarcoid and non-sarcoid tissue did not differ. Although the finding did not link P. acnes to sarcoidosis, the present study clarified the cell invasiveness of P. acnes and the close correlation of cell invasiveness to the serotype and genotype of the two invasion-associated P. acnes genes.
Collapse
Affiliation(s)
- Asuka Furukawa
- Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dussurget O. Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:1-38. [DOI: 10.1016/s1937-6448(08)01401-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|