1
|
Guan Z, Wang Y, Gao L, Zhang W, Lu X. Effects of the histone-like protein HU on cellulose degradation and biofilm formation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2018; 102:6593-6611. [PMID: 29876607 DOI: 10.1007/s00253-018-9071-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/23/2023]
Abstract
Cytophaga hutchinsonii, belonging to Bacteroidetes, is speculated to use a novel cell-contact mode to digest cellulose. In this study, we identified a histone-like protein HU, CHU_2750, in C. hutchinsonii, whose transcription could be induced by crystalline but not amorphous cellulose. We constructed a CHU_2750-deleted mutant and expressed CHU_2750 in Escherichia coli to study the gene's functions. Our results showed that although the deletion of CHU_2750 was not lethal to C. hutchinsonii, the mutant displayed an abnormal filamentous morphology, loose nucleoid, and obvious defects in the degradation of crystalline cellulose and cell motility. Further study indicated that the mutant displayed significantly decreased cell surface and intracellular endoglucanase activities but with β-glucosidase activities similar to the wild-type strain. Analyses by real-time quantitative PCR revealed that the transcription levels of many genes involved in cellulose degradation and/or cell motility were significantly downregulated in the mutant. In addition, we found that CHU_2750 was important for biofilm formation of C. hutchinsonii. The main extracellular components of the biofilm were analyzed, and the results showed that the mutant yielded significantly less exopolysaccharide but more extracellular DNA and protein than the wild-type strain. Collectively, our findings demonstrated that CHU_2750 is important for cellulose degradation, cell motility, and biofilm formation of C. hutchinsonii by modulating transcription of certain related genes, and it is the first identified transcriptional regulator in these processes of C. hutchinsonii. Our study shed more light on the mechanisms of cellulose degradation, cell motility, and biofilm formation by C. hutchinsonii.
Collapse
Affiliation(s)
- Zhiwei Guan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Ying Wang
- Central Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Lijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
2
|
Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Anim Health Res Rev 2017; 19:17-30. [DOI: 10.1017/s146625231700010x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractActinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious respiratory disease that is responsible for major economic losses in the global pork industry. The disease may present itself as a chronic or an acute infection characterized by severe pathology, including hemorrhage, fibrinous and necrotic lung lesions, and, in the worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct contact with infected pigs, and by the farm environment. Many virulence factors associated with this bacterium are well characterized. However, much less is known about the role of biofilm, a sessile mode of growth that may have a critical impact on A. pleuropneumoniae pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, factors associated with biofilm formation and dispersion, and the impact of biofilm on the pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines for controlling the disease.
Collapse
|
3
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Parker A, Cureoglu S, De Lay N, Majdalani N, Gottesman S. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol 2017; 105:309-325. [PMID: 28470798 DOI: 10.1111/mmi.13702] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq-dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA-dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H-NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA-dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation.
Collapse
Affiliation(s)
- Ashley Parker
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Suanur Cureoglu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nicholas De Lay
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
|
6
|
Tremblay YDN, Deslandes V, Jacques M. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus. BMC Genomics 2013; 14:364. [PMID: 23725589 PMCID: PMC3671958 DOI: 10.1186/1471-2164-14-364] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yannick D N Tremblay
- Groupe de recherche sur les maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec J2S 7C6, Canada
| | | | | |
Collapse
|
7
|
Nur A, Hirota K, Yumoto H, Hirao K, Liu D, Takahashi K, Murakami K, Matsuo T, Shu R, Miyake Y. Effects of extracellular DNA and DNA-binding protein on the development of a Streptococcus intermedius biofilm. J Appl Microbiol 2013; 115:260-70. [PMID: 23551549 DOI: 10.1111/jam.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 02/01/2023]
Abstract
AIMS The aim of this study was to clarify the effects of homologous and heterologous extracellular DNAs (eDNAs) and histone-like DNA-binding protein (HLP) on Streptococcus intermedius biofilm development and rigidity. METHODS AND RESULTS Formed biofilm mass was measured with 0·1% crystal violet staining method and observed with a scanning electron microscope. The localizations of eDNA and extracellular HLP (eHLP) in formed biofilm were detected by staining with 7-hydoxyl-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) and anti-HLP antibody without fixation, respectively. DNase I treatment (200 U ml(-1)) markedly decreased biofilm formation and cell density in biofilms. Colocalization of eHLP and eDNA in biofilm was confirmed. The addition of eDNA (up to 1 μg ml(-1)) purified from Strep. intermedius, other Gram-positive bacteria, Gram-negative bacteria, or human KB cells into the Strep. intermedius culture increased the biofilm mass of all tested strains of Strep. intermedius, wild-type, HLP-downregulated strain and control strains. In contrast, the addition of eDNA (>1 μg ml(-1)) decreased the biofilm mass of all Strep. intermedius strains. CONCLUSIONS These findings demonstrated that eDNA and eHLP play crucial roles in biofilm development and its rigidity. SIGNIFICANCE AND IMPACT OF THE STUDY eDNA- and HLP-targeting strategies may be applicable to novel treatments for bacterial biofilm-related infectious diseases.
Collapse
Affiliation(s)
- A Nur
- Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 2012; 7:e31121. [PMID: 22347439 PMCID: PMC3275570 DOI: 10.1371/journal.pone.0031121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022] Open
Abstract
Bacteria can use mammalian hormones to modulate pathogenic processes that play essential roles in disease development. Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry globally. Stress is known to contribute to the outcome of A. pleuropneumoniae infection. To test whether A. pleuropneumoniae could respond to stress hormone catecholamines, gene expression profiles after epinephrine (Epi) and norepinephrine (NE) treatment were compared with those from untreated bacteria. The microarray results showed that 158 and 105 genes were differentially expressed in the presence of Epi and NE, respectively. These genes were assigned to various functional categories including many virulence factors. Only 18 genes were regulated by both hormones. These genes included apxIA (the ApxI toxin structural gene), pgaB (involved in biofilm formation), APL_0443 (an autotransporter adhesin) and genes encoding potential hormone receptors such as tyrP2, the ygiY-ygiX (qseC-qseB) operon and narQ-narP (involved in nitrate metabolism). Further investigations demonstrated that cytotoxic activity was enhanced by Epi but repressed by NE in accordance with apxIA gene expression changes. Biofilm formation was not affected by either of the two hormones despite pgaB expression being affected. Adhesion to host cells was induced by NE but not by Epi, suggesting that the hormones affect other putative adhesins in addition to APL_0443. This study revealed that A. pleuropneumoniae gene expression, including those encoding virulence factors, was altered in response to both catecholamines. The differential regulation of A. pleuropneumoniae gene expression by the two hormones suggests that this pathogen may have multiple responsive systems for the two catecholamines.
Collapse
|
9
|
Novel genes associated with biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 2011; 153:134-43. [DOI: 10.1016/j.vetmic.2011.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/14/2011] [Accepted: 03/23/2011] [Indexed: 12/15/2022]
|
10
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|
11
|
Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010; 41:65. [PMID: 20546697 PMCID: PMC2899255 DOI: 10.1051/vetres/2010037] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 06/10/2010] [Indexed: 12/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. The virulence factors of this microorganism involved in colonization and the induction of lung lesions have been thoroughly studied and some have been well characterized. A. pleuropneumoniae binds preferentially to cells of the lower respiratory tract in a process involving different adhesins and probably biofilm formation. Apx toxins and lipopolysaccharides exert pathogenic effects on several host cells, resulting in typical lung lesions. Lysis of host cells is essential for the bacterium to obtain nutrients from the environment and A. pleuropneumoniae has developed several uptake mechanisms for these nutrients. In addition to persistence in lung lesions, colonization of the upper respiratory tract – and of the tonsils in particular – may also be important for long-term persistent asymptomatic infection. Information on virulence factors involved in tonsillar and nasal cavity colonization and persistence is scarce, but it can be speculated that similar features as demonstrated for the lung may play a role.
Collapse
Affiliation(s)
- Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol 2010; 3:344-56. [PMID: 21255333 PMCID: PMC3158429 DOI: 10.1111/j.1751-7915.2010.00164.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022] Open
Abstract
The global regulator H-NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H-NS to control biofilm formation using protein engineering; H-NS variant K57N was obtained that reduces biofilm formation 10-fold compared with wild-type H-NS (wild-type H-NS increases biofilm formation whereas H-NS K57N reduces it). Whole-transcriptome analysis revealed that H-NS K57N represses biofilm formation through its interaction with the nucleoid-associated proteins Cnu and StpA and in the absence of these proteins, H-NS K57N was unable to reduce biofilm formation. Significantly, H-NS K57N enhanced the excision of defective prophage Rac while wild-type H-NS represses excision, and H-NS controlled only Rac excision among the nine resident E. coli K-12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H-NS regulatory system may be evolved through a single-amino-acid change in its N-terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis.
Collapse
Affiliation(s)
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843‐3122, USA
| |
Collapse
|
13
|
Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J Bacteriol 2010; 192:2414-23. [PMID: 20207760 DOI: 10.1128/jb.01513-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical isolates of the porcine pathogen Actinobacillus pleuropneumoniae often form adherent colonies on agar plates due to expression of an operon, pgaABCD, encoding a poly-beta-1,6-N-acetyl-D-glucosamine (PGA) extracellular matrix. The adherent colony phenotype, which correlates with the ability to form biofilms on the surfaces of polystyrene plates, is lost following serial passage in broth culture, and repeated passage of the nonadherent variants on solid media does not result in reversion to the adherent colony phenotype. In order to investigate the regulation of PGA expression and biofilm formation in A. pleuropneumoniae, we screened a bank of transposon mutants of the nonadherent serovar 1 strain S4074(T) and identified mutations in two genes, rseA and hns, which resulted in the formation of the adherent colony phenotype. In other bacteria, including the Enterobacteriaceae, H-NS acts as a global gene regulator, and RseA is a negative regulator of the extracytoplasmic stress response sigma factor sigma(E). Transcription profiling of A. pleuropneumoniae rseA and hns mutants revealed that both sigma(E) and H-NS independently regulate expression of the pga operon. Transcription of the pga operon is initiated from a sigma(E) promoter site in the absence of H-NS, and upregulation of sigma(E) is sufficient to displace H-NS, allowing transcription to proceed. In A. pleuropneumoniae, H-NS does not act as a global gene regulator but rather specifically regulates biofilm formation via repression of the pga operon. Positive regulation of the pga operon by sigma(E) indicates that biofilm formation is part of the extracytoplasmic stress response in A. pleuropneumoniae.
Collapse
|
14
|
Labrie J, Pelletier-Jacques G, Deslandes V, Ramjeet M, Auger E, Nash JHE, Jacques M. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Vet Res 2009; 41:3. [PMID: 19737507 PMCID: PMC2762130 DOI: 10.1051/vetres/2009051] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible.
Collapse
Affiliation(s)
- Josée Labrie
- Groupe de recherche sur les maladies infectieuses du porc et Centre de recherche en infectiologie porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Feng JX, Song ZZ, Duan CJ, Zhao S, Wu YQ, Wang C, Dow JM, Tang JL. The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice. MICROBIOLOGY-SGM 2009; 155:3033-3044. [PMID: 19423625 DOI: 10.1099/mic.0.028910-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice, one of the most serious rice diseases. The xrvA gene from Xoo strain 1,3751 encodes a protein containing a histone-like nucleoid-structuring protein (H-NS) domain. The expression of xrvA in strain 1,3751 was enhanced in XOM2 minimal medium. Mutation of the xrvA gene of strain 1,3751 led to a significant reduction in virulence in the host plant rice, a delayed hypersensitive response in the nonhost castor-oil plant, a decrease in extracellular polysaccharide and diffusible signal factor production, and an increase in intracellular glycogen accumulation. Northern hybridization analyses revealed that the virulence-associated genes hrpG, hrpX, rpfC, rpfF, rpfG and gumB were downregulated in the xrvA mutant compared to the wild-type and complemented strains. Interestingly, increase of copy number of xrvA in the wild-type strain 1,3751 resulted in a strain showing similar phenotypes as the xrvA mutant and a reduction of the expression of gumB, hrpX, rpfC, rpfF and rpfG. These findings indicate that the xrvA gene, which is highly conserved in the sequenced strains of Xanthomonas, encodes an important regulatory factor for the virulence of Xoo.
Collapse
Affiliation(s)
- Jia-Xun Feng
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Zhi-Zhong Song
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Cheng-Jie Duan
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Shuai Zhao
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Ying-Qiao Wu
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Chao Wang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - J Maxwell Dow
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Ji-Liang Tang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, PR China
| |
Collapse
|