1
|
Zhu Z, Wang H, Qian X, Xue M, Sun A, Yin Y, Tang J, Zhang J. Inhibitory Impact Of Cinobufagin In Triple-Negative Breast Cancer Metastasis: Involvements Of Macrophage Reprogramming Through Upregulated MME and Inactivated FAK/STAT3 Signaling. Clin Breast Cancer 2024; 24:e244-e257.e1. [PMID: 38378361 DOI: 10.1016/j.clbc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Cinobufagin (CBG), a key bioactive component in cinobufacini, exhibits antitumor properties. This study explores CBG's impact on triple-negative breast cancer (TNBC) metastasis and elucidates the underpinning mechanism. METHODS Murine xenograft and orthotopic metastatic TNBC models were generated and treated with CBG. The burden of metastatic tumor in the mouse lung, the epithelial to mesenchymal transition (EMT) markers, and macrophage polarization markers within the tumors were examined. The phenotype of tumor-associated macrophages (TAMs) and mobility of TNBCs in vitro in a macrophage-TNBC cell coculture system were analyzed. Physiological targets of CBG were identified by bioinformatics analyses. RESULTS CBG treatment significantly alleviated lung tumor burden and EMT activity. It triggered an M2-to-M1 shift in TAMs, resulting in decreased TNBC cell migration, invasion, and EMT in vitro. CBG upregulated membrane metalloendopeptidase (MME) expression, suppressing FAK and STAT3 phosphorylation. Silencing of MME, either in mice or TAMs, counteracted CBG effects, reinstating M2 TAM predominance and enhancing TNBC cell metastasis. Cotreatment with Defactinib, a FAK antagonist, reversed M2 TAM polarization and TNBC cell metastasis. Notably, MME silencing in TNBC cells had no impact on CBG-suppressed malignant properties, indicating MME's indirect involvement in TNBC cell behavior through TAM mediation. CONCLUSION This study unveils CBG's ability to enhance MME expression, deactivate FAK/STAT3 signaling, and inhibit TNBC metastasis by suppressing M2-skewed macrophages.
Collapse
Affiliation(s)
- Zhaohui Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Hanlu Wang
- Department of Thyroid and Breast Surgery, The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, PR China
| | - Xu Qian
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Meiling Xue
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Aijun Sun
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Jinhai Tang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
2
|
Park JI, Jung SY, Song KH, Lee DH, Ahn J, Hwang SG, Jung IS, Lim DS, Song JY. Predictive DNA damage signaling for low‑dose ionizing radiation. Int J Mol Med 2024; 53:56. [PMID: 38695243 DOI: 10.3892/ijmm.2024.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.
Collapse
Affiliation(s)
- Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - In-Su Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi‑do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
3
|
Dai CL, Zhang RJ, An P, Deng YQ, Rahman K, Zhang H. Cinobufagin: a promising therapeutic agent for cancer. J Pharm Pharmacol 2023; 75:1141-1153. [PMID: 37390473 DOI: 10.1093/jpp/rgad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES Cinobufagin is a natural active ingredient isolated from the traditional Chinese medicine Venenum Bufonis (Chinese: Chansu), which is the dried secretion of the postauricular gland or skin gland of the Bufo gargarizans Cantor or Bufo melanostictus Schneider. There is increasing evidence indicating that cinobufagin plays an important role in the treatment of cancer. This article is to review and discuss the antitumor pharmacological effects and mechanisms of cinobufagin, along with a description of its toxicity and pharmacokinetics. METHODS The public databases including PubMed, China National Knowledge Infrastructure and Elsevier were referenced, and 'cinobufagin', 'Chansu', 'Venenum Bufonis', 'anticancer', 'cancer', 'carcinoma', and 'apoptosis' were used as keywords to summarize the comprehensive research and applications of cinobufagin published up to date. KEY FINDINGS Cinobufagin can induce tumour cell apoptosis and cycle arrest, inhibit tumour cell proliferation, migration, invasion and autophagy, reduce angiogenesis and reverse tumour cell multidrug resistance, through triggering DNA damage and activating the mitochondrial pathway and the death receptor pathway. CONCLUSIONS Cinobufagin has the potential to be further developed as a new drug against cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Run-Jing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Qing Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
4
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
5
|
Zhan X, Wu H, Wu H, Wang R, Luo C, Gao B, Chen Z, Li Q. Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional uses, pharmacological activity, toxicity and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112178. [PMID: 31445132 DOI: 10.1016/j.jep.2019.112178] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufo gargarizans (Cantor, 1842) (BGC), a traditional medicinal animal distributed in many provinces of China, is well known for the pharmaceutical value of Chansu and Chanpi. As traditional Chinese medicines (TCMs), Chansu and Chanpi, with their broad-spectrum of therapeutic applications, have long been applied to detoxification, anti-inflammation, analgesia, etc. OVERARCHING OBJECTIVE: We critically analyzed the current evidence for the traditional uses, chemical profiles, pharmacological activity, toxicity and quality control of BGC (Bufonidae family) to provide a scientific basis for future in-depth studies and perspectives for the discovery of potential drug candidates. METHODOLOGY All of the available information on active constituents and TCMs derived from BGC was obtained using the keywords "Bufo gargarizans", "Chansu", "Chanpi", "Huachansu", or "Cinobufacini" through different electronic databases, including PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), the Wanfang Database, and Pharmacopoeia of China. In addition, Chinese medicine books from different times were used to elucidate the traditional uses of BGC. Electronic databases, including the "IUCN Red List of Threatened Species", "American Museum of Natural History" and "AmphibiaWeb Species Lists", were used to validate the scientific name of BGC. RESULTS To date, about 118 bufadienolide monomers and 11 indole alkaloids have been identified from BGC in total. The extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacological effects. The literature search demonstrated that the ethnomedicinal uses of BGC, such as detoxification, anti-inflammation and the ability to reduce swelling and pain associated with infections, are correlated with its modern pharmacological activities, including antitumor, immunomodulation and attenuation of cancer-derived pain. Bufadienolides and indole alkaloids have been regarded as the main active substances in BGC, among which bufadienolides have significant antitumor activity. Furthermore, the cardiotoxicity of bufadienolides was discussed, and the main molecular mechanism involves in the inhibition of Na+/K+-ATPase. Besides, with the development of modern analytical techniques, the quality control methods of BGC-derived TCMs are being improved constantly. CONCLUSIONS An increasing number of reports suggest that BGC can be regarded as an excellent source for exploring the potential antitumor constituents. However, the future antitumor research of BGC needs to follow the standard pharmacology guidelines, so as to provide comprehensive pharmacological information and aid the reproducibility of the data. Besides, to ensure the efficacy and safety of BGC-derived TCMs, it is vital to construct a comprehensive quality evaluation model on the basis of clarifying pharmacodynamic-related and toxicity-related compositions.
Collapse
Affiliation(s)
- Xiang Zhan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China.
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Rong Wang
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Chuan Luo
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Bo Gao
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Zhiwu Chen
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China.
| |
Collapse
|
6
|
Won G, Lee JH. Salmonella Typhimurium, the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challenge by induction of robust cell-mediated immune responses and activation of dendritic cells. Vet Res 2017; 48:66. [PMID: 29070065 PMCID: PMC5657113 DOI: 10.1186/s13567-017-0474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Salmonella Typhimurium infection via foodborne transmission remains a major public health threat even in developed countries. Vaccines have been developed to reduce the disease burden at the pre-harvest stage, but the cell-mediated immune response against intracellular invasion of the pathogen is not sufficiently elicited by conventional killed Salmonella vaccines, which are safer than live vaccines. In this study, we developed a genetically inactivated vaccine candidate by introducing lysis plasmid pJHL454 harboring the λ phage holin-endolysin system into S. Typhimurium; we designated this vaccine JOL1950. In vitro expression of endolysin was validated by immunoblotting, and complete inactivation of JOL1950 cells was observed following 36 h of the lysis. Electron microscopic examinations by scanning electron microscopy and immunogold labeling transmission EM revealed conserved surface antigenic traits of the JOL1950 cells after lysis. An in vivo immunogenicity study in mice immunized with lysed cells showed significantly increased serum IgG, IgG1, and IgG2a levels. Further, we observed markedly increased in vitro cell proliferation and upregulation of Th1, Th2, and Th17 cytokines in the repulsed splenic T-cells of immunized mice. In dendritic cells (DCs) treated with lysed JOL1950, we observed a significant increase in dendritic cell activation, co-stimulatory molecule production, and levels of immunomodulatory cytokines. In addition, Th1 and Th17 cytokines were also released by naïve CD4+ T-cells pulsed with primed DCs. Lysed JOL1950 also protected against lethal challenge in immunized mice. Together, these results indicate that our vaccine candidate has great potential to induce cell-mediated immunity against S. Typhimurium by facilitating the activation of DCs.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, South Korea.
| |
Collapse
|
7
|
Abstract
Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti-Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy.
Collapse
|