1
|
Abdinia FS, Javadi K, Rajabnia M, Ferdosi-Shahandashti E. A Comprehensive Study on the Distribution of Integrons and Their Gene Cassettes in Clinical Isolates. DNA Cell Biol 2024. [PMID: 39419631 DOI: 10.1089/dna.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Antibiotic resistance is a significant global health concern, leading to increased morbidity, mortality, and health care costs. Integrons are genetic elements that could acquire and express gene cassettes, including those that confer antibiotic resistance. This comprehensive study focused on the distribution of integrons and their gene cassettes in clinical isolates. This study explored the structure and classification of integrons with particular emphasis on Class I, II, III, and IV integrons. It also discussed the role of integrons in antibiotic resistance. The findings of this study contribute to a better understanding of the mechanisms underlying antibiotic resistance and provide valuable insights for developing strategies to combat this public health crisis.
Collapse
Affiliation(s)
- Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 2023; 14:1231938. [PMID: 37720149 PMCID: PMC10500605 DOI: 10.3389/fmicb.2023.1231938] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Hafsa Qadri
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rohan Dhiman
- Department of Life Sciences, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
4
|
Genetic Cassettes Profiling of Class I Integron and Antimicrobial Susceptibility Profiles Among Pseudomonas aeruginosa Isolates Collected from Patients in North of Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-120079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic nosocomial bacterium, especially in infection wards and among patients with burns. The present study addressed the molecular investigation of the gene cassettes of Class I integrin (intI) and its relationship with multiple drug resistance in clinical samples of P. aeruginosa isolated from Babol hospitals in north of Iran. Objectives: This study aimed to detect the frequency of intI and gene cassettes in the clinical isolates of P. aeruginosa. Methods: In this study, from 75 clinical samples, 30 strains were identified using specific biochemical methods. After determining antibiotic susceptibility using disk diffusion and agar dilution, the frequency of the intI gene and its gene cassettes were determined using the polymerase chain reaction (PCR) method. Results: The highest resistance rate was observed for cefotaxime, ampicillin, and nitrofurantoin using disk diffusion and agar dilution methods. The molecular analyses revealed that 60% of the isolates had the intI genes. The frequency of the aadB, dfrA1, and bla-OXA30 genes were 61, 66, and 33%, respectively. Conclusions: The high resistance of Pseudomonas isolates is due to the presence of intI and its gene cassettes. Considering their high resistance to cefotaxime, gentamicin, ampicillin, and imipenem in hospitals, selecting appropriate drugs or generally changing the treatment course for patients is possible to prevent the spread of resistance inducing genes and the development of nosocomial infections.
Collapse
|
5
|
Yan X, Su X, Ren Z, Fan X, Li Y, Yue C, Yang M, Deng H, Deng Y, Xu Z, Zhang D, Li L, Hou R, Liu S, Deng J. High Prevalence of Antimicrobial Resistance and Integron Gene Cassettes in Multi-Drug-Resistant Klebsiella pneumoniae Isolates From Captive Giant Pandas (Ailuropoda melanoleuca). Front Microbiol 2022; 12:801292. [PMID: 35185827 PMCID: PMC8853720 DOI: 10.3389/fmicb.2021.801292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Multi-drug-resistant Klebsiella pneumoniae (MDR K. pneumonia) is increasingly being reported with corresponding increase in morbidity and mortality all over the world. However, limited information is available concerning MDR K. pneumonia in giant pandas. The objective of this study was to grasp the drug resistance profile of MDR K. pneumonia isolated from giant pandas. A total of 182 K. pneumoniae isolates were collected from fresh feces of 94 captive giant pandas of different ages and sex and separated by season. We performed a standard disk diffusion antimicrobial susceptibility test with the isolates and further evaluated the antibiotic resistance genes (ARGs) of multi-drug-resistant strains by high-throughput quantitative PCR. In addition, we then analyzed mobile genetic elements (MGEs), integron gene cassettes, and the multi-locus sequence typing of multi-drug-resistant strains by PCR. Antimicrobial susceptibility testing results demonstrated that a total of 30 (16.5%) K. pneumoniae isolates showed multiple drug resistances. The thirty MDR K. pneumonia isolates were mainly resistant to amoxicillin (100.0%), doxycycline (86.7%), chloramphenicol (60.0%), compound trimethoprim (60.0%) and trimethoprim (56.7%). Fifty different types of antibiotic resistance genes were found, which included a total of 671 antibiotic resistance genes, in the 30 multi-drug-resistant isolates. The top ten resistance genes were: vanTC-02, aacC, blaCTX-M-04, blaSHV-01, blaSHV-02, ampC-04, blaOXY, tetD, blaTEM and tetA-02. Thirteen mobile genetic elements were detected, of which IS26 (96.67%) and intI1 (96.67%) had the highest frequency. The thirty MDR K. pneumonia isolates were negative for the traA, traF, tnsA, IS1133, ISpa7, ISkpn6, intI2 and intI3 genes. Moreover, a further investigation of integrons revealed that two types of specific gene cassettes (dfrA12 + orfF + aadA2 and dfrA12 + orfF) were identified in class 1 integrons. Multi-locus sequence typing results showed that 22 STs in the thirty MDR K. pneumonia isolates were identified, the main type was ST37 (5/30). Our results illustrate that effective surveillance and strict biosecurity strategies should be taken to prevent the spread of multi-drug-resistant bacteria, and monitor the emergence of mobile genetic elements and integrons.
Collapse
Affiliation(s)
- Xia Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueyang Fan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Yunli Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Mei Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongsheng Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
- *Correspondence: Songrui Liu,
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Junliang Deng,
| |
Collapse
|
6
|
Sabbagh P, Ferdosi-Shahandashti A, Rajabnia M, Maali A, Ferdosi Shahandashti E. Investigating Class I Integron and Antimicrobial Resistance Profile of Klebsiella pneumonia isolates in Babol, North of Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
7
|
An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon 2018; 4:e01051. [PMID: 30603692 PMCID: PMC6304470 DOI: 10.1016/j.heliyon.2018.e01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background Acinetobacter baumannii, a potential nosocomial pathogen has stealthily gained entry into the oral cavity. Their association with other pathogens like Pseudomonas aeruginosa in chronic and aggressive periodontitis cases is well documented. The magnitude of problem caused by A . baumannii could be attributed to resistance genes acquired by the organism. Since the microbiome of oral cavity is heterogeneous and complex, the transfer of genes from multidrug resistant A . baumannii may be a serious threat in infection control and management. In view of this fact, the present study aims to categorize and characterize drug resistant genes present in each of the 19 genomes of Acinetobacter Sp. selected for the study. Methods About 19 genome sequences of Acinetobacter spp. with the predominance of different strains of A . baumannii was genotyped using in silico restriction digestion and pulse field gel electrophoresis (PFGE). Further, the prevalence of common drug resistant genes in the genome of various Acinetobacter spp. was recorded using in silico PCR analysis. Results Based on the PFGE pattern, phylogenetic tree was constructed and the genomes were clustered into 6 genotypes. Genotype 4 (n = 8; 42.10%) and 5 (n = 6; 31.57%) were predominant, followed by genotypes 2 (n = 2; 10.52%), 1, 3 and 6 (n = 1; 5.26%). Three species were excluded from the list since they were negative for most of the drug resistant genes tested. Prevalence of drug resistant genes in each of the 16 genomes analysed found oxa-51, ISAba 1 and ADC 1 to be the major genes found in A . baumannii. Acinetobacter spp. belonging to genotypes 4 and 5 were found to harbour 6-10 and 2-8 potential drug resistant genes respectively. Conclusion The present study showed cluster of multi-drug resistant genes in genomes analysed, thus, warranting the need for antibiotic surveillance, alternate therapeutic measures and development of novel antimicrobials. An extensive study on the genes conferring drug resistance in this pathogen will open new avenues for battling the entry and spread of this pathogen in vulnerable patient groups.
Collapse
|
8
|
Zou W, Li C, Yang X, Wang Y, Cheng G, Zeng J, Zhang X, Chen Y, Cai R, Huang Q, Feng L, Wang H, Li D, Zhang G, Chen Y, Zhang Z, Zhang H. Frequency of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from giant pandas (Ailuropoda melanoleuca) in China. Microb Pathog 2018; 116:173-179. [DOI: 10.1016/j.micpath.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022]
|
9
|
Yang X, Zou W, Zeng J, Xie S, An T, Luo X, Chen D, Feng L, Cheng G, Cai R, Huang Q, Wang H. Prevalence of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from yaks (Poephagus grunniens) in Aba Tibetan Autonomous Prefecture, China. Microb Pathog 2017; 111:274-279. [DOI: 10.1016/j.micpath.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
|