1
|
Bo S, Chang SK, Zhu H, Jiang Y, Yang B. Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits. Crit Rev Food Sci Nutr 2022; 63:8083-8106. [PMID: 35373665 DOI: 10.1080/10408398.2022.2056131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prenylated stilbenoids are a unique class of natural phenolic compounds consisting of C6-C2-C6 skeleton with prenyl substitution. They are potential nutraceuticals and dietary supplements presented in some edible plants. Prenylated stilbenoids demonstrate promising health benefits, including antioxidant, anti-cancer, anti-inflammatory, anti-microbial activities. This review reports the structure, bioactivity and potential application of prenylated stilbeniods in food industry. Edible sources of these compounds are compiled and summarized. Structure-activity relationship of prenylated stilbenoids are also highlighted. The biosynthesis strategies of prenylated stilbenoids are reviewed. The findings of these compounds as food preservative, nutraceuticals and food additive are discussed. This paper combines the up-to-date information and gives a full image of prenylated stilbenoids.
Collapse
Affiliation(s)
- Shengtao Bo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sui Kiat Chang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
| | - Hong Zhu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Chemistry and Pharmacology of Cyperaceae Stilbenoids: A Review. Molecules 2021; 26:molecules26092794. [PMID: 34068509 PMCID: PMC8125981 DOI: 10.3390/molecules26092794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cyperaceae is a cosmopolitan plant family with approx. 5000 species distributed worldwide. Several members of this family are used in traditional medicines for the treatment of different diseases. In the last few decades, constituents with great chemical diversity were isolated from sedges, and a wide range of biological activities were detected either for crude extracts or for pure compounds. Among the isolated compounds, phenolic derivatives are the most important, especially stilbenoids, and flavonoids. To date, more than 60 stilbenoids were isolated from 28 Cyperaceae species. Pharmacological investigation of Cyperaceae stilbenoids revealed that several compounds possess promising activities; mainly antiproliferative, antibacterial, antioxidant and anthelmintic effects. Isolation, synthesis and pharmacological investigation of stilbenes are increasing constantly. As Cyperaceae species are very good sources of a wide variety of stilbenes, and several of them occur in large amount worldwide, they are worthy for phytochemical and pharmacological investigations. Moreover, stilbenes are important from chemotaxonomical point of view, and they play a key role in plant defense mechanisms as well. This review summarizes the stilbenoids isolated from sedges, and their biological activities.
Collapse
|
3
|
Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory Role of Nrf2 Signaling Pathway in Wound Healing Process. Molecules 2021; 26:molecules26092424. [PMID: 33919399 PMCID: PMC8122529 DOI: 10.3390/molecules26092424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: ; Tel.: +90-31-2202-3176
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara 06330, Turkey;
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Sarmistha Saha
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
4
|
Saleh MS, Siddiqui MJ, Alshwyeh HA, Al-Mekhlafi NA, Mediani A, Ibrahim Z, Ismail NH, Kamisah Y. Metabolomics-based profiling with chemometric approach to identify bioactive compounds in Salacca zalacca fruits extracts and in silico molecular docking. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
Calogero A, Gallo M, Sica A, Peluso G, Scotti A, Tammaro V, Carrano R, Federico S, Lionetti R, Amato M, Carlomagno N, Dodaro CA, Sagnelli C, Santangelo M. Gastroenterological complications in kidney transplant patients. Open Med (Wars) 2020; 15:623-634. [PMID: 33336019 PMCID: PMC7712021 DOI: 10.1515/med-2020-0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Kidney transplantation is the surgical operation by which one of the two original kidneys is replaced with another healthy one donated by a compatible individual. In most cases, donors are recently deceased. There is the possibility of withdrawing a kidney from a consenting living subject. Usually, living donors are direct family members, but they could be volunteers completely unrelated to the recipient. A much-feared complication in case of kidney transplantation is the appearance of infections. These tend to arise due to immune-suppressor drugs administered as anti-rejection therapy. In this review, we describe the gastrointestinal complications that can occur in subjects undergoing renal transplantation associated with secondary pathogenic microorganisms or due to mechanical injury during surgery or to metabolic or organic toxicity correlated to anti-rejection therapy. Some of these complications may compromise the quality of life or pose a significant risk of mortality; fortunately, many of them can be prevented and treated without the stopping the immunosuppression, thus avoiding the patient being exposed to the risk of rejection episodes.
Collapse
Affiliation(s)
- Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonello Sica
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaia Peluso
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandro Scotti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Tammaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Carrano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Stefano Federico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ruggero Lionetti
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Nicola Carlomagno
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Concetta Anna Dodaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Santangelo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Hošek J, Leláková V, Bobál P, Pížová H, Gazdová M, Malaník M, Jakubczyk K, Veselý O, Landa P, Temml V, Schuster D, Prachyawarakorn V, Pailee P, Ren G, Zpurný F, Oravec M, Šmejkal K. Prenylated Stilbenoids Affect Inflammation by Inhibiting the NF-κB/AP-1 Signaling Pathway and Cyclooxygenases and Lipoxygenase. JOURNAL OF NATURAL PRODUCTS 2019; 82:1839-1848. [PMID: 31268709 DOI: 10.1021/acs.jnatprod.9b00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stilbenoids are important components of foods (e.g., peanuts, grapes, various edible berries), beverages (wine, white tea), and medicinal plants. Many publications have described the anti-inflammatory potential of stilbenoids, including the widely known trans-resveratrol and its analogues. However, comparatively little information is available regarding the activity of their prenylated derivatives. One new prenylated stilbenoid (2) was isolated from Artocarpus altilis and characterized structurally based on 1D and 2D NMR analysis and HRMS. Three other prenylated stilbenoids were prepared synthetically (9-11). Their antiphlogistic potential was determined by testing them together with known natural prenylated stilbenoids from Macaranga siamensis and Artocarpus heterophyllus in both cell-free and cell assays. The inhibition of 5-lipoxygenase (5-LOX) was also shown by simulated molecular docking for the most active stilbenoids in order to elucidate the mode of interaction between these compounds and the enzyme. Their effects on the pro-inflammatory nuclear factor-κB (NF-κB) and the activator protein 1 (AP-1) signaling pathway were also analyzed. The THP1-XBlue-MD2-CD14 cell line was used as a model for determining their anti-inflammatory potential, and lipopolysaccharide (LPS) stimulation of Toll-like receptor 4 induced a signaling cascade leading to the activation of NF-κB/AP-1. The ability of prenylated stilbenoids to attenuate the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was further evaluated using LPS-stimulated THP-1 macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karolina Jakubczyk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany , Czech Academy of Sciences , Rozvojová 263 , 16502 Prague , Czech Republic
| | - Ondřej Veselý
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany , Czech Academy of Sciences , Rozvojová 263 , 16502 Prague , Czech Republic
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources , Czech University of Life Sciences Prague , Kamýcká 129 , 16521 Prague 6-Suchdol , Czech Republic
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany , Czech Academy of Sciences , Rozvojová 263 , 16502 Prague , Czech Republic
| | - Veronika Temml
- Department of Pharmacy/Pharmacognosy and Center for Molecular Biosciences (CMBI) , University of Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry , Paracelsus Medical University Salzburg , Strubergasse 21 , 2020 Salzburg , Austria
| | | | - Phanruethai Pailee
- Chulabhorn Research Institute , Kamphaeng Phet 6 Road , Laksi, Bangkok 10210 , Thailand
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 , People's Republic of China
| | - Filip Zpurný
- Botanical Garden Teplice , J. Suka 1388/18 , 41501 Teplice , Czech Republic
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences , Bělidla 986/4a , 60300 Brno , Czech Republic
| | | |
Collapse
|
7
|
Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2018; 9:1308. [PMID: 30498447 PMCID: PMC6249275 DOI: 10.3389/fphar.2018.01308] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are closely linked to cellular oxidative stress and inflammation. This may be resulted from the imbalance generation of reactive oxygen species and its role in promoting inflammation, thereby contributing to endothelial dysfunction and cardiovascular complications. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a significant role in regulating expression of antioxidant and cytoprotective enzymes in response to oxidative stress. Natural products have emerged as a potential source of bioactive compounds which have shown to protect against atherogenesis development by activating Nrf2 signaling. This review aims to provide a comprehensive summary of the published data on the function, regulation and activation of Nrf2 as well as the molecular mechanisms of natural products in regulating Nrf2 signaling. The beneficial effects of using natural bioactive compounds as a promising therapeutic approach for the prevention and treatment of CVDs are reviewed.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|