1
|
Souza CE, Jacobson NE, An MA, Droit L, Vega AA, Rosales M, Mihindukulasuriya KA, Pastrana K, Handley SA, Parkes M, Rimmer J, Wang D, Dinsdale EA, A. Edwards R, Segall AM. Draft genomes of 12 Bifidobacterium isolates from human IBD fecal samples. Microbiol Resour Announc 2024; 13:e0013023. [PMID: 38099679 PMCID: PMC10793331 DOI: 10.1128/mra.00130-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/19/2023] [Indexed: 01/18/2024] Open
Abstract
Twelve Bifidobacterium strains were isolated from fecal samples of inflammatory bowel disease patients and matched "household control" individuals. These include the species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum.
Collapse
Affiliation(s)
- Cole E. Souza
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Mariel Rosales
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Kathie A. Mihindukulasuriya
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Karina Pastrana
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Miles Parkes
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
| | - Joanna Rimmer
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Sánchez MC, Herráiz A, Tigre S, Llama-Palacios A, Hernández M, Ciudad MJ, Collado L. Evidence of the Beneficial Impact of Three Probiotic-Based Food Supplements on the Composition and Metabolic Activity of the Intestinal Microbiota in Healthy Individuals: An Ex Vivo Study. Nutrients 2023; 15:5077. [PMID: 38140334 PMCID: PMC10745619 DOI: 10.3390/nu15245077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Scientific evidence has increasingly supported the beneficial effects of probiotic-based food supplements on human intestinal health. This ex vivo study investigated the effects on the composition and metabolic activity of the intestinal microbiota of three probiotic-based food supplements, containing, respectively, (1) Bifidobacterium longum ES1, (2) Lactobacillus acidophilus NCFM®, and (3) a combination of L. acidophilus NCFM®, Lactobacillus paracasei Lpc-37™, Bifidobacterium lactis Bi-07™, and Bifidobacterium lactis Bl-04™. This study employed fecal samples from six healthy donors, inoculated in a Colon-on-a-plate® system. After 48 h of exposure or non-exposure to the food supplements, the effects were measured on the overall microbial fermentation (pH), changes in microbial metabolic activity through the production of short-chain and branched-chain fatty acids (SCFAs and BCFAs), ammonium, lactate, and microbial composition. The strongest effect on the fermentation process was observed for the combined formulation probiotics, characterized by the significant stimulation of butyrate production, a significant reduction in BCFAs and ammonium in all donors, and a significant stimulatory effect on bifidobacteria and lactobacilli growth. Our findings suggest that the combined formulation probiotics significantly impact the intestinal microbiome of the healthy individuals, showing changes in metabolic activity and microbial abundance as the health benefit endpoint.
Collapse
Affiliation(s)
- María Carmen Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Sindy Tigre
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | | | - María José Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
3
|
Dunislawska A, Gryzinska M, Siwek M. Changes in the gene expression and methylation in chicken cecal tonsils after in ovo administration of bioactive substances. Sci Rep 2023; 13:19840. [PMID: 37964014 PMCID: PMC10645795 DOI: 10.1038/s41598-023-47080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Cecal tonsils are the main organs which generate an immune response and also the part of the GALT, thus they are in the close proximity of the intestinal microbiota and continuously exposed to microbe-associated molecular patterns. GALT developed regulatory and anti-inflammatory mechanisms which eliminate or tolerate microbiota. Bioactive substances in ovo administration ensures an early contact between the GALT and beneficial bacteria, which greatly promotes the development of tolerance. Our previous studies have shown that the administration of bioactive substances in ovo silences gene expression in the cecal tonsils. The research hypothesis assumes that negative silencing of expression is correlated with the level of methylation in the tonsils. Therefore the current study aimed to analyze the global and gene-specific DNA methylation profiles in the cecal tonsils of two distinct chicken genotypes administered in ovo with bioactive substances. Eggs of Ross 308 and Green-legged Partridgelike were stimulated on day 12 of incubation. The injected compounds were: probiotic-Lactococcus lactis subsp. cremoris, prebiotic-galactooligosaccharides, and synbiotic-combination of both. Chickens were sacrificed on d 42 post-hatching. Cecal tonsils was collected, RNA and DNA were isolated and intended to gene expression, gene methylation and global methylation analysis. Cecal tonsils changes were observed in the methylation of 6 genes: SYK, ANGPTL4, TNFRSF14, IKZF1, CYR61, SERPING. Analyzes showed that the suppression of gene expression is related to the level of methylation of individual genes. Based on the results obtained in the cecal tonsils, it can be concluded that the silencing of gene expression is of an epigenetic nature. This is another study aimed at analyzing the relationship between the host, its intestinal microbiota and the possibilities of its programming.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland.
| | - Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, Sub-Department of General and Molecular Genetics, University of Life Sciences in Lublin, 20-033, Lublin, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland
| |
Collapse
|
4
|
Yang Y, He J, Wang Y, Liang L, Zhang Z, Tan X, Tao S, Wu Z, Dong M, Zheng J, Zhang H, Feng S, Cheng W, Chen Q, Wei H. Whole intestinal microbiota transplantation is more effective than fecal microbiota transplantation in reducing the susceptibility of DSS-induced germ-free mice colitis. Front Immunol 2023; 14:1143526. [PMID: 37234168 PMCID: PMC10206398 DOI: 10.3389/fimmu.2023.1143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1β in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqing Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Tao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Jiang P, Zheng C, Xiang Y, Malik S, Su D, Xu G, Zhang M. The involvement of TH17 cells in the pathogenesis of IBD. Cytokine Growth Factor Rev 2023; 69:28-42. [PMID: 35871978 DOI: 10.1016/j.cytogfr.2022.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is still unclear. Immune dysfunction may play a key role in the pathogenesis of IBD, in which the role of CD4+ T helper (Th) cells is particularly important. Th17 cells are a major component of CD4+ T cells, and their differentiation is regulated by a variety of extracellular signals, transcription factors, RNA, and posttranslational modifications. Th17 cells specifically produce IL-17 and play an important role in the protection of mucous membranes and epithelial tissues against infection by extracellular microbes. However, when immune regulation is dysfunctional, Th17 cells abnormally proliferate and produce large amounts of proinflammatory cytokines that can recruit other inflammatory cells, which together induce abnormal immune responses and result in the development of many autoimmune diseases. In recent years, studies have confirmed that Th17 cells play an important role in the pathogenesis of IBD, which makes it a possible target for IBD therapy. This article reviews the recent progress of Th17 cells involved in the pathogenesis of IBD and its targeted therapy.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Ying Xiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Sara Malik
- Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown 02472, MA, USA
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China; Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai 200001, China.
| |
Collapse
|
6
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
7
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
8
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| |
Collapse
|
9
|
Duque ALRF, Demarqui FM, Santoni MM, Zanelli CF, Adorno MAT, Milenkovic D, Mesa V, Sivieri K. Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Res Int 2021; 149:110657. [PMID: 34600659 DOI: 10.1016/j.foodres.2021.110657] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
Imbalances in gut microbiota composition occur in individuals with autism spectrum disorder (ASD). The administration of probiotics, prebiotics, and synbiotics is emerging as a potential and promising strategy for regulating the gut microbiota and improving ASD-related symptoms. We first investigated the survival of the probiotics Limosilactobacillus (L.) reuteri and Bifidobacterium (B.) longum alone, mixed and combined with a galacto-oligosaccharide (GOS) under simulated gastrointestinal conditions. Next, we evaluated the impact of probiotics (L. reuteri + B. longum), prebiotic (GOS), and synbiotic (L. reuteri + B. longum + GOS) on gut microbiota composition and metabolism of children with ASD using an in vitro fermentation model (SHIME®). The combination of L. reuteri, B. longum, and GOS showed elevated gastrointestinal resistance. The probiotic, prebiotic, and synbiotic treatments resulted in a positive modulation of the gut microbiota and metabolic activity of children with ASD. More specifically, the probiotic treatment increased the relative abundance of Lactobacillus, while the prebiotic treatment increased the relative abundance of Bifidobacterium and decreased the relative abundance of Lachnoclostridium. Changes in microbial metabolism were associated with increased short-chain fatty acid concentrations and reduced ammonium levels, particularly in the prebiotic and synbiotic treatments.
Collapse
Affiliation(s)
- Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Fernanda Manaia Demarqui
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana Marchi Santoni
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cleslei Fernando Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Dragan Milenkovic
- Department of Internal Medicine, UC Davis School of Medicine, University of California, Davis, United States; INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France
| | - Victoria Mesa
- Faculty of Pharmacy, Paris University, Paris, France; Food and Human Nutrition Research Group, University of Antioquia, Medellín, Colombia
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
10
|
Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J Immunol Res 2021; 2021:8030297. [PMID: 34337079 PMCID: PMC8324359 DOI: 10.1155/2021/8030297] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.
Collapse
|
11
|
Zhang C, Zhao Y, Jiang J, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Identification of the key characteristics of Bifidobacterium longum strains for the alleviation of ulcerative colitis. Food Funct 2021; 12:3476-3492. [PMID: 33900330 DOI: 10.1039/d1fo00017a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bifidobacterium longum (B. longum) species are widely used to prevent and treat ulcerative colitis (UC). In this study, phylogenetic and pan-genomic characterization of 122 B. longum strains was performed on the basis of 936 core genes; among these, four strains from different branches of the phylogenetic tree were selected for an evaluation of anti-inflammatory and immune modulatory activities in a DSS-induced colitis mouse model. Among the tested B. longum strains (B. longum FBJ20M1, B. longum FGDLZ8M1, B. longum FGSZY16M3, and B. longum FJSWXJ2M1), B. longum FGDLZ8M1 was found to most effectively alleviate colitis by reducing the expression of pro-inflammatory cytokines, restoring the colon length, and maintaining the mucosal integrity. The anti-inflammatory mechanisms of B. longum FGDLZ8M1 were related to the inhibition of NF-κB signaling. Genomic analysis indicated that these protective effects of B. longum FGDLZ8M1 may be related to specific genes associated with carbohydrate transport and metabolism and defense mechanisms (e.g., tolerance to bile salts and acids). Correlation analysis indicated that gastrointestinal transit tolerance was the most strongly associated factor. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Han R, Ma Y, Xiao J, You L, Pedisić S, Liao L. The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice. Food Chem Toxicol 2021; 149:112001. [PMID: 33482260 DOI: 10.1016/j.fct.2021.112001] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the possible mechanism of the protective effect of a sulfated polysaccharide (SP) from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium (DSS). Balb/c mice were gavaged with SP for four weeks, then colon tissue, cecal contents and feces were collected for further analysis. Results showed that SP was effective for inhibiting colon shortening and oedema forming. It could alleviate colonic inflammation via down-regulating the expression of tumor necrosis factor-α (TNF-α), interleukin (IL-6, IL-1β). Besides, it enhanced the intestinal barrier by up-regulating the expression of tight junction proteins Claudin-1 and Zonula occludens-1 (ZO-1) as well as Mucin (MUC-2). The increased expression of short chain fatty acid (SCFA) receptors including G protein-coupled receptor (GPR43, GPR109A) and olfactory receptor (Olfr78), and SCFA production in feces indicated that most of SCFA were absorbed in colon, which could play positive roles in ameliorating colitis. Furthermore, the results of gut microbiota showed that Enterorhabdus, Desulfovibrio, Alistipes, Bacteroides acidifaciens had closest correlations with the strongest protective effects against colitis. Therefore, SP could alleviate DSS-induced colitis via enhancing intestinal barrier, reducing inflammation, activating SCFA receptors and regulating gut microbiota. It could be developed as functional foods which is good for gut health.
Collapse
Affiliation(s)
- Rui Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, Guangdong, China
| | - Yongxuan Ma
- Guangzhou Liheng Clinical Nutrition Co.LTD, 133 Yiheng Road, Guangzhou, 510610, Guangdong, China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, Guangdong, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, Guangdong, China.
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Prolaz Kasandrića 6, 23000, Zadar, Croatia
| | - Lan Liao
- Department of Food Science, College of Food Science and Technology, Foshan University, Foshan, Guangdong, 528000, China
| |
Collapse
|
13
|
Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Yan S, Yang B, Zhao J, Zhao J, Stanton C, Ross RP, Zhang H, Chen W. A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct 2019; 10:1595-1608. [PMID: 30806428 DOI: 10.1039/c9fo00014c] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B. longum has been reported to exert an alleviative effect on colitis, but the results also suggested significant differences among strains. Here in this study, we compared the effect of B. longum subsp. longum strains with different properties in EPS production on DSS-induced colitis. To investigate the alleviative effect of a ropy-exopolysaccharide (EPS) producing strain, Bifidobacterium longum subsp. longum YS108R, on experimental colitis, C57BL/6J mice (male, 6-8 weeks old) were randomly assigned to six groups (n = 8): normal control, DSS colitis and four DSS colitis groups orally administered with three B. longum subsp. longum strains (YS108R, C11A10B and HAN4-25) and B. animalis subsp. lactis BB12, respectively, in which YS108R produced ropy-EPS, C11A10B produced non-ropy-EPS, HAN4-25 did not produce EPS and BB12 was set as a positive control. Ropy-EPS producing strain YS108R could alleviate the symptoms and remit inflammation induced by DSS, in which YS108R could decrease the pro-inflammatory cytokine IL-6 and IL-17A levels after DSS challenge (from 102 ± 45.22 to 37.95 ± 20.33 pg mL-1 and from 22.14 ± 5.43 to 12.58 ± 2.74, p < 0.05), but another non-ropy-EPS producing strain C11A10B did not decrease the levels of these pro-inflammatory cytokines. Furthermore, YS108R could maintain the expression levels of genes related to the mucosal barrier, but strain HAN4-25, a non-EPS producer, was not able to maintain the expression levels of these genes after DSS challenge. Analysis of gut microbiota showed that DSS treatment significantly increased the relative abundance of Enterobacteriaceae and Peptostreptococcaceae (0.2623 ± 0.162 and 0.0512 ± 0.0361) and decreased the relative abundance of S24-7 (0.042 ± 0.0326); however, YS108R administration could decrease the relative abundance of Enterobacteriaceae and Peptostreptococcaceae to 0.0848 ± 0.0399 and 0.0032 ± 0.0047 and increase the relative abundance of S24-7 to 0.2625 ± 0.0566 (p < 0.05). The results showed that B. longum subsp. longum YS108R could alleviate DSS-induced colitis by modulating the inflammation related cytokines, maintenance of the normal mucosal barrier and reverting the change of microbiota.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Yahfoufi N, Mallet JF, Graham E, Matar C. Role of probiotics and prebiotics in immunomodulation. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Park JS, Choi J, Kwon JY, Jung KA, Yang CW, Park SH, Cho ML. A probiotic complex, rosavin, zinc, and prebiotics ameliorate intestinal inflammation in an acute colitis mouse model. J Transl Med 2018; 16:37. [PMID: 29466999 PMCID: PMC5822606 DOI: 10.1186/s12967-018-1410-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background An altered gut microbiota balance is involved in the pathogenesis of inflammatory bowel disease (IBD), and several probiotic strains are used as dietary supplements to improve intestinal health. We evaluated the therapeutic effect of 12 probiotics in combination with prebiotics, rosavin, and zinc in the dextran sodium sulfate (DSS)-induced colitis mouse model. Methods The probiotic complex or the combination drug was administered orally to mice with DSS-induced colitis, and the body weight, disease activity index, colon length, and histopathological parameters were evaluated. Also, the combination drug was applied to HT-29 epithelial cells, and the expression of monocyte chemoattractant protein 1 (MCP-1) was evaluated by real-time polymerase chain reaction. Results Administration of the combination drug attenuated the severity of DSS-induced colitis. Moreover, the combination drug significantly reduced the levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and IL-17, and significantly increased the levels of Foxp3 and IL-10 in colon sections. Additionally, treatment with the combination drug reduced MCP-1 expression in HT-29 cells. Treatment with the combination drug decreased the levels of α-smooth muscle actin and type I collagen compared with vehicle treatment in mice with DSS-induced colitis. Conclusion These results suggest that the combination of a probiotic complex with rosavin, zinc, and prebiotics exerts a therapeutic effect on IBD by modulating production of pro- and anti-inflammatory cytokines and the development of fibrosis.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Kyung-Ah Jung
- IMPACT Biotech, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. .,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|