1
|
Lamichhane J, Choi BI, Stegman N, Fontes Noronha M, Wolfe AJ. Macrolide Resistance in the Aerococcus urinae Complex: Implications for Integrative and Conjugative Elements. Antibiotics (Basel) 2024; 13:433. [PMID: 38786161 PMCID: PMC11117264 DOI: 10.3390/antibiotics13050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The recognition of the Aerococcus urinae complex (AUC) as an emerging uropathogen has led to growing concerns due to a limited understanding of its disease spectrum and antibiotic resistance profiles. Here, we investigated the prevalence of macrolide resistance within urinary AUC isolates, shedding light on potential genetic mechanisms. Phenotypic testing revealed a high rate of macrolide resistance: 45%, among a total of 189 urinary AUC isolates. Genomic analysis identified integrative and conjugative elements (ICEs) as carriers of the macrolide resistance gene ermA, suggesting horizontal gene transfer as a mechanism of resistance. Furthermore, comparison with publicly available genomes of related pathogens revealed high ICE sequence homogeneity, highlighting the potential for cross-species dissemination of resistance determinants. Understanding mechanisms of resistance is crucial for developing effective surveillance strategies and improving antibiotic use. Furthermore, the findings underscore the importance of considering the broader ecological context of resistance dissemination, emphasizing the need for community-level surveillance to combat the spread of antibiotic resistance within the urinary microbiome.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Brian I. Choi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| |
Collapse
|
2
|
Choi BI, Ene A, Du J, Johnson G, Putonti C, Schouw CH, Dargis R, Senneby E, Christensen JJ, Wolfe AJ. Taxonomic considerations on Aerococcus urinae with proposal of subdivision into Aerococcus urinae, Aerococcus tenax sp. nov., Aerococcus mictus sp. nov., and Aerococcus loyolae sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37755156 DOI: 10.1099/ijsem.0.006066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Average nucleotide identity analysis, based on whole genome sequences of 115 strains previously identified as Aerococcus urinae, an emerging uropathogen, discriminates at least six unique genomic taxa. The whole genome analysis affords clearer species boundaries over 16S rRNA gene sequencing and traditional phenotypic approaches for the identification and phylogenetic organization of Aerococcus species. The newly described species can be differentiated by matrix-assisted laser desorption ionization time-of-flight analysis of protein signatures. We propose the emendation of the description of A. urinae (type strain ATCC 51268T = CCUG 34223T=NCFB 2893) and the names of Aerococcus tenax sp. nov. (ATCC TSD-302T = DSM 115700T = CCUG 76531T=NR-58630T), Aerococcus mictus sp. nov. (ATCC TSD-301T = DSM 115699T = CCUG 76532T=NR-58629T), and Aerococcus loyolae sp. nov. (ATCC TSD-300T = DSM 115698T = CCUG 76533T=NR-58628T) for three of the newly identified genomic taxa.
Collapse
Affiliation(s)
- Brian I Choi
- Loyola University Chicago, Department of Microbiology & Immunology, Maywood IL, USA
| | - Adriana Ene
- Loyola University Chicago, Bioinformatics Program, Chicago IL, USA
| | - Jingjie Du
- Loyola University Chicago, Department of Microbiology & Immunology, Maywood IL, USA
| | | | - Catherine Putonti
- Loyola University Chicago, Department of Microbiology & Immunology, Maywood IL, USA
- Loyola University Chicago, Bioinformatics Program, Chicago IL, USA
- Loyola University Chicago, Department of Biology, Chicago IL, USA
| | - Christian H Schouw
- The Regional Department of Clinical Microbiology, Region Zealand, Denmark
| | - Rimtas Dargis
- The Regional Department of Clinical Microbiology, Region Zealand, Denmark
| | - Erik Senneby
- Lund University, Clinical Microbiology, Department of Translational Medicine, Lund, Sweden
| | - Jens J Christensen
- The Regional Department of Clinical Microbiology, Region Zealand, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alan J Wolfe
- Loyola University Chicago, Department of Microbiology & Immunology, Maywood IL, USA
| |
Collapse
|
3
|
Ahmadzada A, Fuchs F, Hamprecht A. Susceptibility of Aerococcus urinae and Aerococcus sanguinicola to Standard Antibiotics and to Nitroxoline. Microbiol Spectr 2023; 11:e0276322. [PMID: 36847493 PMCID: PMC10100651 DOI: 10.1128/spectrum.02763-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Aerococcus urinae and Aerococcus sanguinicola have been increasingly recognized as causative agents of urinary tract infection (UTI) during the last decade. Nitroxoline achieves high urinary concentrations after oral administration and is recommended in uncomplicated UTI in Germany, but its activity against Aerococcus spp. is unknown. The aim of this study was to assess the in vitro susceptibility of clinical Aerococcus species isolates to standard antibiotics and to nitroxoline. Between December 2016 and June 2018, 166 A. urinae and 18 A. sanguinicola isolates were recovered from urine specimens sent to the microbiology laboratory of the University Hospital of Cologne, Germany. Susceptibility to standard antimicrobials was analyzed by disk diffusion (DD) according to EUCAST methodology, nitroxoline was tested by DD and agar dilution. Susceptibility of Aerococcus spp. to benzylpenicillin, ampicillin, meropenem, rifampicin, nitrofurantoin, and vancomycin was 100% and resistance was documented only against ciprofloxacin (20 of 184; 10.9%). MICs of nitroxoline in A. urinae isolates were low (MIC50/90 1/2 mg/L) while significantly higher MICs were observed in A. sanguinicola (MIC50/90 64/128 mg/L). If the EUCAST nitroxoline breakpoint for E. coli and uncomplicated UTI was applied (16 mg/L), 97.6% of A. urinae isolates would be interpreted as susceptible while all A. sanguinicola isolates would be considered resistant. Nitroxoline demonstrated high activity against clinical A. urinae isolates, but low activity against A. sanguinicola. Nitroxoline is an approved antimicrobial for UTI and could be an alternative oral drug to treat A. urinae urinary tract infection, yet clinical studies are needed to demonstrate this potential in vivo. IMPORTANCE A. urinae and A. sanguinicola have been increasingly recognized as causative agents in urinary tract infections. Currently, there are few data available on the activity of different antibiotics against these species and no data on nitroxoline. We demonstrate that clinical isolates in Germany are highly susceptible to ampicillin, while resistance to ciprofloxacin was common (10.9%). Additionally, we show that nitroxoline is highly active against A. urinae, but not against A. sanguinicola, which based on the presented data, should be considered intrinsically resistant. The presented data will help to improve the therapy of urinary tract infections by Aerococcus species.
Collapse
Affiliation(s)
- Aysel Ahmadzada
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne, Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Gilbert NM, Choi B, Du J, Collins C, Lewis AL, Putonti C, Wolfe AJ. A mouse model displays host and bacterial strain differences in Aerococcus urinae urinary tract infection. Biol Open 2021; 10:271827. [PMID: 34387311 PMCID: PMC8380466 DOI: 10.1242/bio.058931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, the clinical significance of Aerococcus urinae has been increasingly recognized. A. urinae has been implicated in cases of urinary tract infection (UTI; acute cystitis and pyelonephritis) in both male and female patients, ranging from children to older adults. Aerococcus urinae can also be invasive, causing urosepsis, endocarditis, and musculoskeletal infections. Mechanisms of pathogenesis in A. urinae infections are poorly understood, largely due to the lack of an animal model system. In response to this gap, we developed a model of A. urinae urinary tract infection in mice. We compared A. urinae UTI in female C3H/HeN and C57BL/6 mice and compared four clinical isolates of A. urinae isolated from patients with UTI, urgency urinary incontinence, and overactive bladder. Our data demonstrate that host genetic background modulates A. urinae UTI. Female C57BL/6 female mice rapidly cleared the infection. Female C3H/HeN mice, which have inherent vesicoureteral reflux that flushes urine from the bladder up into the kidneys, were susceptible to prolonged bacteriuria. This result is consistent with the fact that A. urinae infections most frequently occur in patients with underlying urinary tract abnormalities or disorders that make them susceptible to bacterial infection. Unlike uropathogens such as E. coli, which cause infection and inflammation both of the bladder and kidneys in C3H/HeN mice, A. urinae displayed tropism for the kidney, persisting in kidney tissue even after clearance of bacteria from the bladder. Aerococcus urinae strains from different genetic clades displayed varying propensities to cause persistent kidney infection. Aerococcus urinae infected kidneys displayed histological inflammation, neutrophil recruitment and increased pro-inflammatory cytokines. These results set the stage for future research that interrogates host-pathogen interactions between A. urinae and the urinary tract. Summary:Aerococcus urinae clinical isolates are genetically diverse and display differential capacity to cause UTI in a mouse model. Infection was rapidly cleared from the bladder, but persisted and caused inflammation in the kidney.
Collapse
Affiliation(s)
- Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Choi
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jingjie Du
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Christina Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA.,Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Sinha D, Sun X, Khare M, Drancourt M, Raoult D, Fournier PE. Pangenome analysis and virulence profiling of Streptococcus intermedius. BMC Genomics 2021; 22:522. [PMID: 34238216 PMCID: PMC8266483 DOI: 10.1186/s12864-021-07829-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S. intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our institute and 14 available in GenBank. Results We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054 strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated that the genomic diversity of S. intermedius represents an “open” pangenome model. We identified a core virulome of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and SNPs were independent from disease types and sample sources. However, using Principal Component analysis based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB. Conclusions Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S. intermedius pathogenesis and highlights putative targets in a diagnostic perspective.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Xifeng Sun
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mudra Khare
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
6
|
Liu X, Guo W, Cui S, Tang X, Zhao J, Zhang H, Mao B, Chen W. A Comprehensive Assessment of the Safety of Blautia producta DSM 2950. Microorganisms 2021; 9:microorganisms9050908. [PMID: 33922843 PMCID: PMC8146736 DOI: 10.3390/microorganisms9050908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, Blautia has attracted attention for its role in ameliorating host diseases. In particular, Blautia producta DSM 2950 has been considered a potential probiotic due to its ability to mitigate inflammation in poly(I:C) induced HT-29 cells. Thus, to promote the development of indigenous intestinal microorganisms with potential probiotic function, we conducted a comprehensive experimental analysis of DSM 2950 to determine its safety. This comprised a study of its potential virulence genes, antibiotic resistance genes, genomic islands, antibiotic resistance, and hemolytic activity and a 14-day test of its acute oral toxicity in mice. The results indicated no toxin-related virulence genes in the DSM 2950 genome. Most of the genomic islands in DSM 2950 were related to metabolism, rather than virulence expression. DSM 2950 was sensitive to most of the tested antibiotics but was tolerant of treatment with kanamycin, neomycin, clindamycin, or ciprofloxacin, probably because it possessed the corresponding antibiotic resistance genes. Oral acute toxicity tests indicated that the consumption of DSM 2950 does not cause toxic side effects in mice. Overall, the safety profile of DSM 2950 confirmed that it could be a candidate probiotic for use in food and pharmaceutical preparations.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Tai DBG, Go JR, Fida M, Saleh OA. Management and treatment of Aerococcus bacteremia and endocarditis. Int J Infect Dis 2020; 102:584-589. [PMID: 33157289 DOI: 10.1016/j.ijid.2020.10.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES We describe our multicenter experience on diagnosis and management of Aerococcus bacteremia including the susceptibility profile of Aerococcus species and a suggested algorithm for clinicians. METHODS Retrospective study of all patients with positive blood cultures for Aerococcus species from January 2005 to July 2020 in our institution with clinical data and susceptibility profile. Data were collected from both electronic health record and clinical microbiology laboratory database. RESULTS There were 219 unique isolates with only the susceptibility profiles available, while 81 patients had clinical information available. Forty-nine of those cases were deemed as true bloodstream infection and the rest were of unclear clinical significance. Cases of endocarditis (n = 7) were high-grade, monomicrobial bacteremia caused by Aerococcus urinae. Patients with endocarditis were younger (66 vs 80 p < 0.05). The risk for endocarditis was higher if duration of symptoms was longer than 7 days (OR 105, 95% CI: 5-2271), or if there were septic emboli (OR 71, 95% CI: 3-1612). A DENOVA score cutoff of ≥ 3 was 100% sensitive and 89% specific in detecting endocarditis. The 30-day and 3-month all-cause mortality for bacteremia was 17% and 24%, respectively. Six out of seven patients with endocarditis survived. CONCLUSIONS Antibiotic regimen for aerococcal bloodstream infections and endocarditis should be guided by species identification and antimicrobial susceptibility testing. DENOVA scoring system's performance in this study is more congruent to other studies. Hence, it can be used as an adjunctive tool in assessing the need for echocardiogram to rule out endocarditis. In our experience, two and four weeks of treatment for bloodstream infections and endocarditis, respectively, had good outcomes.
Collapse
Affiliation(s)
| | - John Raymond Go
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, USA
| | - Madiha Fida
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, USA
| | - Omar Abu Saleh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, USA
| |
Collapse
|
8
|
Aerococcus urinae Isolated from Women with Lower Urinary Tract Symptoms: In Vitro Aggregation and Genome Analysis. J Bacteriol 2020; 202:JB.00170-20. [PMID: 32284319 DOI: 10.1128/jb.00170-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/07/2023] Open
Abstract
Aerococcus urinae is increasingly recognized as a potentially significant urinary tract bacterium. A. urinae has been isolated from urine collected from both males and females with a wide range of clinical conditions, including urinary tract infection (UTI), urgency urinary incontinence (UUI), and overactive bladder (OAB). A. urinae is of particular clinical concern because it is highly resistant to many antibiotics and, when undiagnosed, can cause invasive and life-threatening bacteremia, sepsis, or soft tissue infections. Previous genomic characterization studies have examined A. urinae strains isolated from patients experiencing UTI episodes. Here, we analyzed the genomes of A. urinae strains isolated as part of the urinary microbiome from patients with UUI or OAB. Furthermore, we report that certain A. urinae strains exhibit aggregative in vitro phenotypes, including flocking, which can be modified by various growth medium conditions. Finally, we performed in-depth genomic comparisons to identify pathways that distinguish flocking and nonflocking strains.IMPORTANCE Aerococcus urinae is a urinary bacterium of emerging clinical interest. Here, we explored the ability of 24 strains of A. urinae isolated from women with lower urinary tract symptoms to display aggregation phenotypes in vitro We sequenced and analyzed the genomes of these A. urinae strains. We performed functional genomic analyses to determine whether the in vitro hyperflocking aggregation phenotype displayed by certain A. urinae strains was related to the presence or absence of certain pathways. Our findings demonstrate that A. urinae strains have different propensities to display aggregative properties in vitro and suggest a potential association between phylogeny and flocking.
Collapse
|
9
|
Yu Y, Tsitrin T, Bekele S, Thovarai V, Torralba MG, Singh H, Wolcott R, Doerfert SN, Sizova MV, Epstein SS, Pieper R. Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419875089. [PMID: 31555049 PMCID: PMC6753514 DOI: 10.1177/1178626419875089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022]
Abstract
Aerococcus urinae (Au) and Globicatella sanguinis (Gs) are gram-positive bacteria belonging to the family Aerococcaceae and colonize the human immunocompromised and catheterized urinary tract. We identified both pathogens in polymicrobial urethral catheter biofilms (CBs) with a combination of 16S rDNA sequencing, proteomic analyses, and microbial cultures. Longitudinal sampling of biofilms from serially replaced catheters revealed that each species persisted in the urinary tract of a patient in cohabitation with 1 or more gram-negative uropathogens. The Gs and Au proteomes revealed active glycolytic, heterolactic fermentation, and peptide catabolic energy metabolism pathways in an anaerobic milieu. A few phosphotransferase system (PTS)-based sugar uptake and oligopeptide ABC transport systems were highly expressed, indicating adaptations to the supply of nutrients in urine and from exfoliating squamous epithelial and urothelial cells. Differences in the Au vs Gs metabolisms pertained to citrate lyase and utilization and storage of glycogen (evident only in Gs proteomes) and to the enzyme Xfp that degrades d-xylulose-5'-phosphate and the biosynthetic pathways for 2 protein cofactors, pyridoxal 6'-phosphate and 4'-phosphopantothenate (expressed only in Au proteomes). A predicted ZnuA-like transition metal ion uptake system was identified for Gs while Au expressed 2 LPXTG-anchored surface proteins, one of which had a predicted pilin D adhesion motif. While these proteins may contribute to fitness and virulence in the human host, it cannot be ruled out that Au and Gs fill a niche in polymicrobial biofilms without being the direct cause of injury in urothelial tissues.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, Rockville,
MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Senneby E, Sunnerhagen T, Hallström B, Lood R, Malmström J, Karlsson C, Rasmussen M. Identification of two abundant Aerococcus urinae cell wall-anchored proteins. Int J Med Microbiol 2019; 309:151325. [PMID: 31257068 DOI: 10.1016/j.ijmm.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
Aerococcus urinae is an emerging pathogen that causes urinary tract infections, bacteremia and infective endocarditis. The mechanisms through which A. urinae cause infection are largely unknown. The aims of this study were to describe the surface proteome of A. urinae and to analyse A. urinae genomes in search for genes encoding surface proteins. Two proteins, denoted Aerococcal surface protein (Asp) 1 and 2, were through the use of mass spectrometry based proteomics found to quantitatively dominate the aerococcal surface. The presence of these proteins on the surface was also shown using ELISA with serum from rabbits immunized with the recombinant Asp. These proteins had a signal sequence in the amino-terminal end and a cell wall-sorting region in the carboxy-terminal end, which contained an LPATG-motif, a hydrophobic domain and a positively charged tail. Twenty-three additional A. urinae genomes were sequenced using Illumina HiSeq technology. Six different variants of asp genes were found (denoted asp1-6). All isolates had either one or two of these asp-genes located in a conserved locus, designated Locus encoding Aerococcal Surface Proteins (LASP). The 25 genomes had in median 13 genes encoding LPXTG-proteins (range 6-24). For other Gram-positive bacteria, cell wall-anchored surface proteins with an LPXTG-motif play a key role for virulence. Thus, it will be of great interest to explore the function of the Asp proteins of A. urinae to establish a better understanding of the molecular mechanisms by which A. urinae cause disease.
Collapse
Affiliation(s)
- Erik Senneby
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| | - Torgny Sunnerhagen
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| | - Björn Hallström
- Centre for Translational Genomics, Division of Clinical Genetics, BMC B10, 221 85, Lund University, Lund, Sweden.
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| | - Magnus Rasmussen
- Division of Infection Medicine, Department of Clinical Sciences, BMC B14, 221 85, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
|
12
|
Jiménez-Guerra G, Lara-Oya A, Martínez-Egea I, Navarro-Marí JM, Gutiérrez-Fernández J. Urinary tract infection by aerococcus sanguinicola. An emerging opportunistic pathogen. Rev Clin Esp 2018; 218:351-355. [PMID: 29759804 DOI: 10.1016/j.rce.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 10/28/2022]
Abstract
Elderly patients with underlying urological disease have a greater risk of urinary tract infections due to uncommon pathogens. The disease caused by Aerococcus has been underestimated, but mass spectrometry could be a simple method for identifying this pathogen. In this study, we report 2 cases of urinary tract infection by Aerococcus sanguinicola. A descriptive clinical-microbiological study was conducted on the presence of A. sanguinicola causing urinary tract infections. The presence of A. sanguinicola occurred in elderly patients with previous urological disease and a significant count in urine obtained through bladder catheterisation. Correct identification was achieved through mass spectrometry, and the clinical outcome of administering amoxicillin and cefuroxime was satisfactory. In this study, we also report the pathogenic capacity of A. sanguinicola. When there is a significant number of alpha-haemolytic microorganisms in the urine cultures, A. sanguinicola should be ruled out before reporting a result as urogenital microbiota.
Collapse
Affiliation(s)
- G Jiménez-Guerra
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación Biosanitaria, Granada, España
| | - A Lara-Oya
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación Biosanitaria, Granada, España
| | - I Martínez-Egea
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves-Instituto de Investigación Biosanitaria, Granada, España
| | - J M Navarro-Marí
- Departamento de Microbiología, Facultad de Medicina, Universidad de Granada-Instituto de Investigación Biosanitaria, Granada, España
| | - J Gutiérrez-Fernández
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación Biosanitaria, Granada, España; Departamento de Microbiología, Facultad de Medicina, Universidad de Granada-Instituto de Investigación Biosanitaria, Granada, España.
| |
Collapse
|