1
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
2
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
4
|
Zhang L, Li C, Zhai Y, Feng L, Bai K, Zhang Z, Huang Y, Li T, Li D, Li H, Cui P, Chen D, Wang H, Yang X. Analysis of the vaginal microbiome of giant pandas using metagenomics sequencing. Microbiologyopen 2020; 9:e1131. [PMID: 33205903 PMCID: PMC7755806 DOI: 10.1002/mbo3.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, a total of 14 vaginal samples (GPV1‐14) from giant pandas were analyzed. These vaginal samples were divided into two groups as per the region and age of giant pandas. All the vaginal samples were analyzed using metagenomic sequencing. As per the outcomes of metagenomic analysis, Proteobacteria (39.04%), Firmicutes (5.27%), Actinobacteria (2.94%), and Basidiomycota (2.77%) were found to be the dominant phyla in the microbiome of the vaginal samples. At the genus level, Pseudomonas (21.90%) was found to be the most dominant genus, followed by Streptococcus (3.47%), Psychrobacter (1.89%), and Proteus (1.38%). Metastats analysis of the microbial species in the vaginal samples of giant pandas from Wolong Nature Reserve, Dujiangyan and Ningbo Youngor Zoo, and Ya'an Bifengxia Nature Reserve was found to be significantly different (p < 0.05). Age groups, that is, AGE1 (5‐10 years old) and AGE2 (11‐16 years old), also demonstrated significantly different inter‐group microbial species (p < 0.05). For the first time, Chlamydia and Neisseria gonorrhoeae were detected in giant pandas’ reproductive tract. GPV3 vaginal sample (2.63%) showed highest Chlamydia content followed by GPV14 (0.91%), and GPV7 (0.62%). GPV5 vaginal sample (7.17%) showed the highest Neisseria gonorrhoeae content, followed by GPV14 (7.02%), and GPV8 (6.50%). Furthermore, we employed eggNOG, CAZy, KEGG, and NCBI databases to investigate the functional significance of giant panda's vaginal microbial community. The outcomes indicated that giant panda's vaginal microbes were involved in biological processes. The data from this study will help in improving the reproductive health of giant pandas.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yaru Zhai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Lan Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Keke Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zhizhong Zhang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Pengfei Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
5
|
Jin L, Wu D, Li C, Zhang A, Xiong Y, Wei R, Zhang G, Yang S, Deng W, Li T, Li B, Pan X, Zhang Z, Huang Y, Zhang H, He Y, Zou L. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 2020. [DOI: 10.1007/s13199-020-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|