1
|
Dawan J, Liao X, Ding T, Ahn J. Phenotypic and Genotypic Responses of Foodborne Pathogens to Sublethal Concentrations of Lactic Acid and Sodium Chloride. Microb Drug Resist 2024; 30:332-340. [PMID: 38900709 DOI: 10.1089/mdr.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
The aim of this study was to evaluate the phenotypic and genotypic responses of Salmonella Typhimurium ATCC 19585 (ST) and Staphylococcus aureus KACC 13236 (SA) preadapted to sublethal concentrations of lactic acid (LA) and sodium chloride (NaCl) for 48 hr at 37°C, followed by re-exposure to lethal concentrations of LA and NaCl for 24 hr at 37°C. ST and SA treated in a sequential and ordered manner with LA and NaCl were assigned as LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl. The treatments, LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl, were evaluated by antimicrobial susceptibility, bacterial fluctuation, relative fitness, zeta potential, and gene expression. The MICt/MICc ratios of LA, NaCl, CIP, GEN, and TET against ST treated with LA-LA were 1.0 to 0.8, 0.8, 0.3, 0.4, and 0.5, respectively. The MICt/MICc ratios of NaCl, CIP, GEN, and TET were between 0.5-0.8 for SA treated with LA-LA. ST treated with LA-LA and SA treated with LA-NaCl exhibited the highest coefficient of variance. The lowest relative fitness was observed at ST treated with LA-LA (0.5). ST and SA treated with LA-LA showed the lowest zeta potential. The transporter-, toxin-antitoxin system-, chaperone protein-, and SOS response-related genes were suppressed at ST and SA treated with LA-LA. The transporter-, toxin-antitoxin system-, and chaperone protein-related genes were overexpressed in SA treated with LA-NaCl, NaCl-LA, and NaCl-NaCl. The results suggest that ST and SA treated with LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl could induce collateral sensitivity and cross-resistance.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| |
Collapse
|
2
|
Pourmehdiabadi A, Nobakht MS, Hajjam Balajorshari B, Yazdi MR, Amini K. Investigating the effects of zinc oxide and titanium dioxide nanoparticles on the formation of biofilm and persister cells in Klebsiella pneumoniae. J Basic Microbiol 2024; 64:e2300454. [PMID: 38117954 DOI: 10.1002/jobm.202300454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
The biofilm formation in klebsiella pneumoniae isolates poses a significant problem as it can result in treatment failure and the development of chronic infections. These biofilms act as protective barriers, rendering the bacteria resistant to antibiotics. Additionally, persister cells, which make up a small fraction of the bacterial population, have the ability to enter a dormant state after treatment with high doses of antibiotics. These persister cells play a crucial role in the high level of biofilm-mediated tolerance to antibiotics. The present study aimed to investigate the impact of Zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles on the formation of biofilm and persister cells in K. pneumoniae. The minimum inhibitory concentration (MIC) of colistin in K. pneumoniae ATCC 13883 was determined using the microdilution method. The formation of persister cells was evaluated by introducing sub-MIC of colistin. Subsequently, the MIC of ZnO NPs and TiO2 NPs in these persister cells was assessed using the microdilution method. Furthermore, the effects of nanoparticles on the expression levels of biofilm-associated genes were analyzed using real-time polymer chain reaction (PCR). The MIC values for colistin, ZnO, and TiO2 were determined at 2, 12.5, and 6.25 μg/mL, respectively. In the presence of nanoparticles, biofilm formation decreased. Real-time PCR results showed the messenger RNA (mRNA) level of mrkH and fimH were decreased and the expression of luxS and mazF were increased. Biofilm formation of K. pneumoniae ATCC 1383 was inhibited in response to nanoparticles. According to the results of the present study use of nanoparticles may help control multidrug-resistant (MDR) infections in hospitalized patients.
Collapse
Affiliation(s)
| | | | - Behdad Hajjam Balajorshari
- Department of Microbiology, Faculty of Science and Novel Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mohammadreza Rezaei Yazdi
- Department of Microbiology, Faculty of Life Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kumarss Amini
- Department of Microbiology, School of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran
| |
Collapse
|
3
|
Nasehi R, Masjedian Jazi F, Pakzad P. Investigating the role of Bacillus subtilis type II toxin-antitoxin system in drought stress survival. J Basic Microbiol 2023. [PMID: 37247424 DOI: 10.1002/jobm.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Toxin-antitoxin (TA) systems, present in plasmids and bacterial chromosomes, are widespread in bacteria such as Bacillus subtilis and are known to be involved in growth regulation, bacterial tolerance to environmental stress conditions as well as biofilm formation. The aim of the current study was to investigate the role of TA systems in drought condition stress in B. subtilis isolates. The presence of TA systems including mazF/mazE and yobQ/yobR in B. subtilis (strain 168) was investigated using the polymerase chain reaction (PCR) method. TA system expression at 438 and 548 g/L of ethylene glycol concentrations was evaluated using real-time PCR method and sigB gene was used as internal control. The expression rate (fold change) of mazF toxin gene treated with 438 and 548 g/L of ethylene glycol was 6 and 8.4, respectively. This indicates an increase in the expression of this toxin in drought stress condition. Also, the fold change of mazE antitoxin in the treatment with 438 and 548 g/L of ethylene glycol was 8.6 and 5, respectively. While yobQ/yobR showed a decrease in expression in 438 and 548 g/L of ethylene glycol concentrations. So that the highest expression reduction (8.3) was observed for yobQ gene at the concentration of 548 g/L of ethylene glycol. Results of this study revealed the significant role of B. subtilis TA systems in drought stress which can be considered as the resistance mechanism of this bacterium under stress conditions.
Collapse
Affiliation(s)
- Rozhin Nasehi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Asadollahi P, Sadeghifard N, Kazemian H, Pakzad I, Kalani BS. In silico Study of the Proteins Involved in the Persistence of Brucella spp. Curr Drug Discov Technol 2023; 20:1-13. [PMID: 35929636 DOI: 10.2174/1570163819666220805161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the major problems with Brucella infections is its tendency to become chronic and recurrent, providing a hindrance to the management of this infection. It has been proposed that chronicity is greatly affected by a phenomenon called persistence in bacteria. Several mechanisms are involved in bacterial persistence, including the type II toxin-antitoxin system, the SOS and oxidative and stringent responses. METHODS In this in silico study, these persistence mechanisms in Brucella spp. were investigated. RESULTS The structure and the interactions between modules involved in these systems were designed, and novel peptides that can interfere with some of these important mechanisms were developed. CONCLUSION Since peptide-based therapeutics are a new and evolving field due to their ease of production, we hope that peptides developed in this study, as well as the information about the structure and interactions of modules of persistence mechanisms, can further be used to design drugs against Brucella persister cells in the hope of restraining the chronic nature of Brucellosis.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Liu C, Mao X, Meng L, Li J. Stresses make microbe undergo programmed cell death: Mechanisms and opportunities. Food Res Int 2022; 157:111273. [DOI: 10.1016/j.foodres.2022.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
6
|
Genotyping of Listeria monocytogenes isolates by high-resolution melting curve (HRM) analysis of tandem repeat locus. Braz J Infect Dis 2022; 26:102348. [PMID: 35341738 PMCID: PMC9387474 DOI: 10.1016/j.bjid.2022.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is responsible for causing listeriosis, a type of food poisoning with high mortality. This bacterium is mainly transmitted to humans through the consumption of contaminated foods. Detection of L. monocytogenes through molecular methods is crucial for food safety and clinical diagnosis. Present techniques are characterized by low discrimination power and high cost, as well as being time-consuming and taking several days to give the final result. In our study, MLVA-HRM (Multiple-Locus Variable-number tandem repeats Analysis ‒ High-Resolution Melting) was investigated as an alternative method for a fast and precise method for the genotyping of L. monocytogenes isolates. Forty-eight isolates of L. monocytogenes obtained from the microbial bank of Department of Microbiology, Iran University of Medical Sciences, were typed by MLVA-HRM analysis using five Variable Numbers of Tandem Repeat (VNTR) loci. A total of 43 different types were obtained. This research demonstrated the usefulness of the MLVA-HRMA method and its ability to discriminate L. monocytogenes isolates. Since this method is easier and more efficient than existing methods, it can be widely used in food processing plants and diagnostic laboratories as a fast and accurate method.
Collapse
|
7
|
Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M, Bartosik D. Plasmidome of Listeria spp.-The repA-Family Business. Int J Mol Sci 2021; 22:ijms221910320. [PMID: 34638661 PMCID: PMC8508797 DOI: 10.3390/ijms221910320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Elvira Chapkauskaitse
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| |
Collapse
|
8
|
Karimaei S, Kalani BS, Shahrokhi N, Mashhadi R, Pourmand MR. Expression of type II toxin-antitoxin systems and ClpP protease of methicillin-resistant Staphylococcus aureus under thermal and oxidative stress conditions. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:204-211. [PMID: 34540156 PMCID: PMC8408035 DOI: 10.18502/ijm.v13i2.5982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Staphylococcus aureus is a main human pathogen that causes a variety of chronic to persistent infections. Across the diverse factors of pathogenesis in bacteria, Toxin-Antitoxin (TA) systems can be considered as an anti-bacterial target due to their involvement in cellular physiology counting stress responses. Here, the expression of TA system genes and ClpP protease was investigated under the thermal and oxidative conditions in S. aureus strains. Materials and Methods: The colony-forming unit (CFU) was used to determine the effects of thermal and oxidative stresses on bacterial survival. Moreover, the expressions of TA system genes in S. aureus strains were evaluated 30 min and 1 h after thermal and oxidative stresses, respectively, by quantitative reverse transcriptase real-time PCR (qRT-PCR). Results: The cell viability was constant across thermal stress while oxidative stress induction showed a significantly decrease in the growth of Methicillin-Resistant S. aureus (MRSA) strain. Based on the qRT-PCR results, the expression of mazF gene increased under both thermal and oxidative stresses in the MRSA strain. Conclusion: A putative TA system (namely immA/irrA) most likely has a role under the stress condition of S. aureus. The MRSA strain responds to stress by shifting the expression level of TA genes that has diverse effects on the survival of the pathogen due to the stress conditions. The TA systems may be introduced as potential targets for antibacterial treatment.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, Biotechnology Research Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nader Shahrokhi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, Biotechnology Research Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Shivaee A, Meskini M, Roodaki RRN, Kalani BS, Mirshekar M, Razavi S. Evaluation of the effects of nano-curcumin on the expression of genes involved in biofilm formation in Staphylococcus epidermidis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
11
|
RAPD PCR and actA based molecular typing of L. monocytogenes isolated from human, food and domestic animals in northwest of Iran. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Evaluation of Putative Type II Toxin-Antitoxin Systems and Lon Protease Expression in Shigella flexneri Following Infection of Caco-2 Cells. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.98625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
: Shigella flexneri causes bacillary dysentery in developing countries. Due to recent reports regarding antimicrobial resistance in human S. flexneri, finding alternative therapeutics is of vital importance. Toxin-antitoxin (TA) systems have recently been introduced as antimicrobial targets owing to their involvement in bacterial survival in stress conditions and “persister” cell formation. In this study, the presence of four TA loci were studied in S. flexneri ATCC 12022. The presence of genes coding for the identified TA loci and Lon protease were confirmed by the PCR method using specific primers. Caco-2 cell lines were then infected with this standard strain, and 8 and 24 h post-infection, expression levels of genes coding for the studied TA loci, and Lon protease were evaluated using a real-time PCR method. Expression of mazF, GNAT (Gcn5-related N-acetyltransferase), yeeU, pfam13975, and Lon genes showed 5.4, 9.8, 2.3, 2.7, and 13.8-fold increase, respectively, 8 h after bacterial invasion of the Caco-2 cell line. In addition, the expression of the aforementioned genes showed 4.8, 10.8, 2.3, 3.7, and 16.8-fold increase after 24 h. The GNAT and lon genes showed significantly higher expression levels compared to the control (P value < 0.05). However, the increase in the expression level of yeeU was the same at 8 h and 24 h post-infection. In addition, mazF expression level showed a slight decrease at 24 h compared to 8h post-infection. Genes coding for GNAT and Lon protease showed a significantly higher expression after invading the Caco-2 cell line. Therefore, targeting GNAT or Lon protease can be taken into consideration for finding novel antimicrobial drug strategies. The exact functions and mechanisms of TA systems in S. flexneri isolates are suggested to be experimentally determined.
Collapse
|
13
|
Type II toxin/antitoxin system genes expression in persister cells of Klebsiella pneumoniae. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/mrm.0000000000000232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Narimisa N, Sadeghi Kalani B, Mohammadzadeh R, Masjedian Jazi F. Combination of Antibiotics-Nisin Reduces the Formation of Persister Cell in Listeria monocytogenes. Microb Drug Resist 2020; 27:137-144. [PMID: 32429732 DOI: 10.1089/mdr.2020.0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persister cells are a subpopulation of bacteria with the ability of survival when exposed to lethal doses of antibiotics, and are responsible for antibiotic therapy failure and infection recurrences. In this study, we investigated persister cell formation and the role of nisin in combination with antibiotics in reducing persistence in Listeria monocytogenes. We also examined the expression of toxin-antitoxin (TA) systems in persister cells of L. monocytogenes to gain a better understanding of the effect of TA systems on persister cell formation. To induce persistence, L. monocytogenes were exposed to high doses of different antibiotics over a period of 24 hr, and the expression levels of TA system was genes were measured 5 hr after the addition of antibiotics by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. To investigate the effect of nisin, L. monocytogenes was exposed to a combination of nisin and antibiotics. According to our results, L. monocytogenes was highly capable of persister cell formation, and the combination of nisin and antibiotics resulted in reduced persistence. qRT-PCR results showed a significant increase in GNAT/RHH expression among the studied systems. Overall, our results demonstrated the potential of the combination of nisin and antibiotics in reducing persister cell formation, and emphasized the role of the GNAT/RHH system in bacterial persistence.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Boukhris I, Smaoui S, Ennouri K, Morjene N, Farhat-Khemakhem A, Blibech M, Alghamdi OA, Chouayekh H. Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model. PLoS One 2020; 15:e0231397. [PMID: 32302332 PMCID: PMC7164649 DOI: 10.1371/journal.pone.0231397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life.
Collapse
Affiliation(s)
- Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Nawres Morjene
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Othman A. Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Agüero JA, Akarsu H, Aguilar-Bultet L, Oevermann A, Falquet L. Large-Scale Comparison of Toxin and Antitoxins in Listeria monocytogenes. Toxins (Basel) 2020; 12:toxins12010029. [PMID: 31906535 PMCID: PMC7020466 DOI: 10.3390/toxins12010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
Toxin–antitoxin systems (TASs) are widely distributed in prokaryotes and encode pairs of genes involved in many bacterial biological processes and mechanisms, including pathogenesis. The TASs have not been extensively studied in Listeria monocytogenes (Lm), a pathogenic bacterium of the Firmicutes phylum causing infections in animals and humans. Using our recently published TASmania database, we focused on the known and new putative TASs in 352 Listeria monocytogenes genomes and identified the putative core gene TASs (cgTASs) with the Pasteur BIGSdb-Lm database and, by complementarity, the putative accessory gene TAS (acTASs). We combined the cgTASs with those of an additional 227 L. monocytogenes isolates from our previous studies containing metadata information. We discovered that the differences in 14 cgTAS alleles are sufficient to separate the four main lineages of Listeria monocytogenes. Analyzing these differences in more details, we uncovered potentially co-evolving residues in some pairs of proteins in cgTASs, probably essential for protein–protein interactions within the TAS complex.
Collapse
Affiliation(s)
- José Antonio Agüero
- CENSA National Center for Animal and Plant Health, San José de las Lajas Municipality 32700, Mayabeque, Cuba;
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| | - Hatice Akarsu
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- Department of Biology, UniFr University of Fribourg, 1700 Fribourg, Switzerland
- Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.A.-B.); (A.O.)
| | - Lisandra Aguilar-Bultet
- Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.A.-B.); (A.O.)
- USB University Hospital Basel, 4031 Basel, Switzerland
| | - Anna Oevermann
- Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.A.-B.); (A.O.)
| | - Laurent Falquet
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- Department of Biology, UniFr University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Shivaee A, Mohammadzadeh R, Shahbazi S, Pardakhtchi E, Ohadi E, Kalani BS. Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis. Acta Microbiol Immunol Hung 2019; 66:499-508. [PMID: 31198057 DOI: 10.1556/030.66.2019.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen causing infections related to the usage of implants and medical devices. Pathogenicity of this microorganism is mainly linked to its capability to form biofilm structures. Biofilm formation vastly depends on several factors including different proteins. We studied the expression levels of three proteins including SdrH, Bap, AtlE, and MazF at different time intervals during the course of biofilm formation. In this study, a catheter-derived S. epidermidis isolate with strong ability of biofilm formation was selected. PCR assay was used to detect sdrH, bap, atlE, and mazF genes in this isolate. Real-time PCR was used to determine the expression levels of these genes after 4, 8, and 20 h during the course of biofilm formation. The studied genes showed different expression levels at different time intervals during biofilm formation by real-time PCR method. Expression levels of atlE and sdrH genes were the highest at 4 h, whereas bap gene showed the highest expression level at 8 h during the course of biofilm formation. In addition, the expression level of mazF gene peaked at 4 h and then progressively decreased at 8 and 20 h. Our results suggest the importance of AtlE, SdrH, and MazF proteins in the establishment and development of the biofilm structure. In addition, our results showed the important role of protein Bap in the accumulation of biofilm structure. Future studies are required to understand the exact role of MazF in the process of biofilm formation.
Collapse
Affiliation(s)
- Ali Shivaee
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Shahbazi
- 2 Department of Bacteriology, Pasteur Institute of Iran, Teheran, Iran
| | - Elahe Pardakhtchi
- 3 Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- 3 Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Prevalence of Premature Stop Codons (PMSCs) in Listeria monocytogenes isolated from clinical and food samples in Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella. Appl Environ Microbiol 2019; 85:AEM.01370-19. [PMID: 31471303 DOI: 10.1128/aem.01370-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022] Open
Abstract
As for many opportunistic pathogens, the virulence potential of Listeria monocytogenes is highly heterogeneous between isolates and correlated, to some extent, with phylogeny and gene repertoires. In sharp contrast with copious data on intraspecies genome diversity, little is known about transcriptome diversity despite the role of complex genetic regulation in pathogenicity. The current study implemented RNA sequencing to characterize the transcriptome profiles of 33 isolates under optimal in vitro growth conditions. Transcript levels of conserved single-copy genes were comprehensively explored from several perspectives, including phylogeny, in silico-predicted virulence category based on epidemiological multilocus sequence typing (MLST) data, and in vivo virulence phenotype assessed in Galleria mellonella Comparing baseline transcriptomes between isolates was intrinsically more complex than standard genome comparison because of the inherent plasticity of gene expression in response to environmental conditions. We show that the relevance of correlation analyses and their statistical power can be enhanced by using principal-component analysis to remove the first level of irrelevant, highly coordinated changes linked to growth phase. Our results highlight the major contribution of transcription factors with key roles in virulence to the diversity of transcriptomes. Divergence in the basal transcript levels of a substantial fraction of the transcriptome was observed between lineages I and II, echoing previously reported epidemiological differences. Correlation analysis with in vivo virulence identified numerous sugar metabolism-related genes, suggesting that specific pathways might play roles in the onset of infection in G. mellonella IMPORTANCE Listeria monocytogenes is a multifaceted bacterium able to proliferate in a wide range of environments from soil to mammalian host cells. The accumulated genomic data underscore the contribution of intraspecies variations in gene repertoire to differential adaptation strategies between strains, including infection and stress resistance. It seems very likely that the fine-tuning of the transcriptional regulatory network is also a key component of the phenotypic diversity, albeit more difficult to investigate than genome content. Some studies reported incongruity in the basal transcriptome between isolates, suggesting a putative relationship with phenotypes, but small isolate numbers hampered proper correlation analyses with respect to their characteristics. The present study is the embodiment of the promising approach that consists of analyzing correlations between transcriptomes and various isolate characteristics. Statistically significant correlations were found with phylogenetic groups, epidemiological evidence of virulence potential, and virulence in Galleria mellonella larvae used as an in vivo model.
Collapse
|
21
|
Mohammadzadeh R, Azadegan A, Kalani BS. Listeriolysin S may inhibit the anti-listerial properties of Lactobacillus plantarum. Microb Pathog 2019; 137:103744. [PMID: 31521800 DOI: 10.1016/j.micpath.2019.103744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
Abstract
Listeriosis is a serious infection linked to the consumption of food contaminated with Listeria monocytogenes. Outbreaks and mortality rates associated with this infection make it a significant public health concern. As biocontrol agents, probiotics such as Lactobacillus plantarum had been of interest for the promotion of antilisterial activities. However, a recent bacteriocin from epidemic L. monocytogenes strains called listeriolysin S (LLS) has been identified with the ability to target the prokaryotic cells that may hinder the anti-listerial properties of L. plantarum. The present study was designed to investigate the interplay between serotypes 4b (lineage I, LLS-producing strain) and 1/2a (NCTC7973, lineage II, non LLS-producing strain) L. monocytogenes and L. plantarum ATCC13643. According to the results of the co-culture assay, L. plantarum significantly reduced the growth of LLS- L. monocytogenes. However, there was a significant reduction in the growth of L. plantarum when co-cultured with LLS + L. monocytogenes. Moreover, according to the results of the culture assay using Caco-2 cell line, there was a significant reduced intracellular count of LLS- L. monocytogenes after L. plantarum exposure, whereas, no major differences were observed in the intracellular count of LLS + L. monocytogenes. These results suggest that L. plantarum may be unable to inhibit infections caused by LLS-producing L. monocytogenes. Also, phylogenetic studies showed the presence of LLS-like proteins in several environmental isolates including L. innocua which suggests a role for LLS in survival and bacterial colonization in harsh conditions. In overall, the ability of LLS to target certain bacterial cells should be taken into consideration during the development of anti-listerial probiotics. Future experiments are required to elucidate the exact mechanisms by which LLS achieves bacterial killing.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Azadegan
- Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Kalani BS, Najafi M, Mohammadzadeh R, Razavi S, Ohadi E, Irajian G. Targeting Listeria monocytogenes consensus sequence of internalin genes using an antisense molecule. Microb Pathog 2019; 136:103689. [PMID: 31445122 DOI: 10.1016/j.micpath.2019.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
As an intracellular pathogen, Listeria monocytogenes can enter host cells where it can replicate and escape detection and eradication by the host immune response making the clearance of infection very challenging. Furthermore, with the advent of antimicrobial resistance, the need for alternative targets is inevitable. Internalin proteins are crucial to this bacterium as they contribute to bacterial entry to the systemic circulation. In this study, we targeted a highly conserved region of these proteins by an antisense sequence that was covalently conjugated to the cell penetrating peptides (CPP) to overcome the challenging delivery barriers. Then, we evaluated the efficiency of this construct in vitro. We also assessed the antigenicity, cytotoxicity, and probability of apoptosis induction by this construct. The studied CPP-PNA inhibited bacterial growth and suppressed the mRNA expression of internalins in a dose-dependent manner. In addition, at all studied concentrations, CPP-PNA significantly reduced the invasion rate of L. monocytogenes in the examined cell lines. Moreover, different concentrations of CPP-PNA did not have a significant antigenic, cytotoxic, and apoptotic properties compared to the control. These results suggest the effectiveness of CPP-antisense in targeting the mRNAs of internalins for various research, therapeutic and preventive purposes. However, additional research is required to evaluate the potency, safety, and pharmacokinetics of this compound for the prevention and treatment of listeriosis.
Collapse
Affiliation(s)
- Behrooz Sadeghi Kalani
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Biofilm Formation in Staphylococcus epidermidis Isolated from Hospitalized Patients. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.64496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Mohammadzadeh N, Kalani BS, Bolori S, Azadegan A, Gholami A, Mohammadzadeh R, Masjedian Jazi F. Identification of an intestinal microbiota signature associated with hospitalized patients with diarrhea. Acta Microbiol Immunol Hung 2019; 66:189-202. [PMID: 31062602 DOI: 10.1556/030.66.2019.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As an important global health challenge, diarrhea kills nearly two million people each year. Postinfectious irritable bowel syndrome (IBS) usually manifests itself as the diarrhea-predominant subtype. Small intestinal bacterial overgrowth has been observed more frequently in patients with IBS compared to healthy controls. However, the pathophysiology of IBS is not fully understood, and based on recent evidences, altered gut microbiota is involved in the pathogenesis of IBS. Therefore, we aimed to compare the microbiome in hospitalized patients with diarrhea and healthy individuals. Thirty patients and 10 healthy controls were included into this case-control study. Microbial count was performed using quantitative real-time polymerase chain reaction method using bacterial 16S rRNA gene. Clostridium cluster IV and Bacteroides were significantly more frequent in the patients compared with the healthy individuals (p = 0.02 and 0.023, respectively). However, the quantity of Enterococcus and Bifidobacterium groups were significantly higher in healthy controls than in diarrheal group (p = 0.000076 and 0.001, respectively). The results showed that the number of bacteria in all bacterial groups was significantly different between healthy individuals and diabetic group, whereas the difference between the healthy group and IBS was not significant for Bifidobacterium group. The findings of this study outlined the relationship between diarrhea, IBS, and diabetes disease and bacterial composition. It could be concluded that modifying the bacterial composition by probiotics can be helpful in the control and management of the mentioned disease.
Collapse
Affiliation(s)
- Nima Mohammadzadeh
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Bolori
- 2 Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Azadegan
- 3 Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Gholami
- 4 Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Rokhsareh Mohammadzadeh
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
In Silico Insight into the Dominant Type II Toxin–Antitoxin Systems and Clp Proteases in Listeria monocytogenes and Designation of Derived Peptides as a Novel Approach to Interfere with this System. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09868-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|