1
|
Zhao X, Qin J, Chen G, Yang C, Wei J, Li W, Jia W. Whole-genome sequencing, multilocus sequence typing, and resistance mechanism of the carbapenem-resistant Pseudomonas aeruginosa in China. Microb Pathog 2024; 192:106720. [PMID: 38815778 DOI: 10.1016/j.micpath.2024.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Pseudomonas aeruginosa is a significant pathogen responsible for severe multisite infections with high morbidity and mortality rates. This study analyzed carbapenem-resistant Pseudomonas aeruginosa (CRPA) at a tertiary hospital in Shandong, China, using whole-genome sequencing (WGS). The objective was to explore the mechanisms and molecular characteristics of carbapenem resistance. A retrospective analysis of 91 isolates from January 2022 to March 2023 was performed, which included strain identification and antimicrobial susceptibility testing. WGS was utilized to determine the genome sequences of these CRPA strains, and the species were precisely identified using average nucleotide identification (ANI), with further analysis on multilocus sequence typing and strain relatedness. Some strains were found to carry the ampD and oprD genes, while only a few harbored carbapenemase genes or related genes. Notably, all strains possessed the mexA, mexE, and mexX genes. The major lineage identified was ST244, followed by ST235. The study revealed a diverse array of carbapenem resistance mechanisms among hospital isolates, differing from previous studies in mainland China. It highlighted that carbapenem resistance is not due to a single mechanism but rather a combination of enzyme-mediated resistance, AmpC overexpression, OprD dysfunction, and efflux pump overexpression. This research provides valuable insights into the evolutionary mechanisms and molecular features of CRPA resistance in this region, aiding in the national prevention and control of CRPA, and offering references for targeting and developing new drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Jiangnan Qin
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Guang Chen
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Wei
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Wei Jia
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China.
| |
Collapse
|
2
|
Piccirilli A, Di Marcantonio S, Costantino V, Simonetti O, Busetti M, Luzzati R, Principe L, Di Domenico M, Rinaldi A, Cammà C, Perilli M. Identification of IncA Plasmid, Harboring blaVIM-1 Gene, in S. enterica Goldcoast ST358 and C. freundii ST62 Isolated in a Hospitalized Patient. Antibiotics (Basel) 2023; 12:1659. [PMID: 38136693 PMCID: PMC10741216 DOI: 10.3390/antibiotics12121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In the present study, we analyzed the genome of two S. enterica strains TS1 and TS2 from stool and blood cultures, respectively, and one strain of C. freundii TS3, isolated from a single hospitalized patient with acute myeloid leukemia. The S. enterica Goldcoast ST358 (O:8 (C2-C3) serogroup), sequenced by the MiSeq Illumina system, showed the presence of β-lactamase genes (blaVIM-1, blaSHV-12 and blaOXA-10), aadA1, ant(2″)-Ia, aac(6')-Iaa, aac(6')-Ib3, aac(6')-Ib-cr, qnrVC6, parC(T57S), and several incompatibility plasmids. A wide variety of insertion sequences (ISs) and transposon elements were identified. In C. freundii TS3, these were the blaVIM-1, blaCMY-150, and blaSHV-12, aadA1, aac(6')-Ib3, aac(6')-Ib-cr, mph(A), sul1, dfrA14, ARR-2, qnrVC6, and qnrB38. IncA plasmid isolated from E.coli/K12 transconjugant and C. freundii exhibited a sequence identity >99.9%. The transfer of IncA plasmid was evaluated by conjugation experiments.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (M.P.)
| | - Sascia Di Marcantonio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (M.P.)
| | - Venera Costantino
- Microbiology Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy; (V.C.); (M.B.)
| | - Omar Simonetti
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy; (O.S.); (R.L.)
| | - Marina Busetti
- Microbiology Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy; (V.C.); (M.B.)
| | - Roberto Luzzati
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy; (O.S.); (R.L.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy;
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (M.D.D.); (A.R.); (C.C.)
| | - Antonio Rinaldi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (M.D.D.); (A.R.); (C.C.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy; (M.D.D.); (A.R.); (C.C.)
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (M.P.)
| |
Collapse
|
3
|
Mangal S, Chhibber S, Singh V, Harjai K. Guaiacol augments quorum quenching potential of Ciprofloxacin against Pseudomonas aeruginosa. J Appl Microbiol 2022; 133:2235-2254. [PMID: 35984044 DOI: 10.1111/jam.15787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
AIM The present study aims to investigate the antimicrobial as well as antivirulence potential and the principle mechanism of action of guaiacol against Pseudomonas aeruginosa. METHODS AND RESULTS Quorum sensing inhibition and membrane disruption studies were performed to check effect of guaiacol on the virulence of P. aeruginosa. Production of various virulence factors and biofilm formation were studied at sub-MIC concentration of guaiacol alone (1/8 MIC) and in combination with ciprofloxacin (1/2 FIC). Guaiacol exhibited synergistic interactions with ciprofloxacin and further reduced production of all virulence factors and biofilm formation. Using crystal violet (CV) assay and quantification of exopolysaccharide we observed weak biofilm formation, together with reduced motilities at sub MIC which was further visualized by confocal laser microscopy and Field Emission Scanning Electron Microscopy (FESEM).The antibacterial activity of guaiacol against P. aeruginosa upon 2×MIC exposure coincided with enhanced membrane permeability leading to disruption and release of cellular material as quantified by CV uptake assay and Sodium dodecyl suphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results demonstrated that sub MICs of guaiacol in combination with ciprofloxacin can act as a potent alternate compound for attenuation of quorum sensing in P. aeruginosa. CONCLUSION Study reports that guaiacol in combination with ciprofloxacin at 1/2 FIC significantly compromised the bacterial growth and motilities alongside inducing quorum quenching potential. This was accompanied by inhibition of biofilm which subsequently decreased EPS production at sub MIC concentration. Furthermore, guaiacol in combination displayed a severe detrimental effect on bacterial membrane disruption, thereby enhancing cellular material release. SIGNIFICANCE AND IMPACT OF STUDY For the first time, the potential of guaiacol in combination with ciprofloxacin in attenuation of virulence factors and biofilm formation in P. aeruginosa were described. Results corroborate on how plant bioactive in synergism with antibiotics can act as alternate treatment regime to tackle the menace of drug resistance.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 2022; 13:1114199. [PMID: 36762094 PMCID: PMC9905436 DOI: 10.3389/fmicb.2022.1114199] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feifeng Zhong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gongyong Peng, ✉
| |
Collapse
|
5
|
Wang J, Ye C, Fan X, Liu J, Huang Y, Lin X, Soteyome T, Chen L, Liang Y, Yu G, Xu Z. Letter to the Editor: Four Novel Types of Gene Cassettes from Carbapenem-Resistant Pseudomonas aeruginosa in Southern China-First Report of qnrVC7. Microb Drug Resist 2021; 27:1011-1012. [PMID: 33635135 DOI: 10.1089/mdr.2020.0453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Juexin Wang
- Ganzhou Center for Disease Control and Prevention, Ganzhou, P.R. China
| | - Congxiu Ye
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaoyi Fan
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Juzhen Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Yunzu Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Xin Lin
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, P.R. China
| | - Guangchao Yu
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| |
Collapse
|
6
|
Liu M, Ma J, Jia W, Li W. Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from Class 1 Integrons in Pseudomonas aeruginosa Strains. Microb Drug Resist 2020; 26:670-676. [PMID: 32407190 PMCID: PMC7307683 DOI: 10.1089/mdr.2019.0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the antibiotic-resistance phenotypes and molecularly characterized class 1 integron gene cassettes from 113 Pseudomonas aeruginosa isolates from patients. Primers specific for the class 1 integron integrase (intI1) gene were used to screen for these integrons using polymerase chain reactions (PCRs). The variable regions of the integrons were PCR-amplified and sequenced. Sputum was the most common specimen (69.9%; 79/113) followed by aseptic sites (21.2%; 24/113). Of the 113 isolates with phenotypic resistance to the tested antimicrobials, the highest resistances were to ciprofloxacin (CIP) (26.55%), imipenem (IPM) (23.89%), and meropenem (MEM) (23%). Carbapenem-sensitive P. aeruginosa (CS-PA) isolates displayed 23 patterns, and the predominant multidrug resistance phenotype was CIP-levofloxacin (7.23%, 6/83). Carbapenem-resistant P. aeruginosa (CR-PA) isolates displayed 12 patterns, and the predominant multidrug resistance phenotype was IPM-MEM (23.33%, 7/30). Class 1 integrons were detected in 14 (12.4%, 14/113) isolates, 7.22% (6/83) in CS-PA isolates, and 26.67% (8/30) in CR-PA isolates. Six gene cassette arrays were detected, the most prevalent being aacA4-blaOXA101-aadA5 in five isolates (4.4%, 5/113). Seventeen gene cassettes were detected. The most prevalent antibiotic-resistance gene cassettes were aacA4 (6.2%, 7/113), blaOXA-1, and blaOXA-101. Extended-spectrum β-lactamase resistance genes were detected. Some of the genes carried were similar to those in other species, but some had shared characteristics among the P. aeruginosa isolates. Long-standing drug resistance genes appeared to be under elimination in P. aeruginosa, whereas integrons conferring resistance to commonly used clinical drugs such as β-lactamases, fluoroquinolones, and even carbapenems, as well as some other gene elements, were found to be newly integrated.
Collapse
Affiliation(s)
- Mi Liu
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Jie Ma
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wei Jia
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
7
|
Novovic KD, Malesevic MJ, Filipic BV, Mirkovic NL, Miljkovic MS, Kojic MO, Jovčić BU. PsrA Regulator Connects Cell Physiology and Class 1 Integron Integrase Gene Expression Through the Regulation of lexA Gene Expression in Pseudomonas spp. Curr Microbiol 2019; 76:320-328. [DOI: 10.1007/s00284-019-01626-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|