1
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
2
|
Reactions of dimedone and alkyl orthoformates with and without activators. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
PEGylated palladium doped ceria oxide nanoparticles (Pd-dop-CeO2-PEG NPs) for inhibition of bacterial pathogens and human lung cancer cell proliferation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Park S, Wang MH. Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate-Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:582. [PMID: 35631408 PMCID: PMC9143145 DOI: 10.3390/ph15050582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The adenosine triphosphate (ATP)-conjugated biogenic selenium nanoparticles (SeNPs) for P2 (purinoceptors) receptor-targeted anti-colon cancer activity were developed in this study. First, the SeNPs were synthesized using Trichoderma extracts (TE) and then conjugated with ATP to enhance their anticancer activity. The developed SeNPs had an oval crystalline structure with an average diameter size of 26.45 ± 1.71 d. nm, while the ATP-SeNPs were 78.6 ± 2.91 d. nm. The SeNPs contain Se, and less persistence of P while the ATP-SeNPs have high level of P, and Se in the energy-dispersive spectroscopy (EDS). Further, both nanoparticles exhibited larger sizes in the dynamic light scattering (DLS) analysis than in the transmission electron microscopy (TEM) analysis. The DLS and Fourier transform infrared spectroscopy (FTIR) results provide evidence that the amine group (-NH2) of ATP might bind with the negatively charged SeNPs through covalent bonding. The IC50 concentration was 17.25 ± 1.16 µg/mL for ATP-SeNPs and 61.24 ± 2.08 µg/mL against the caco-2 cell line. The IC50 results evidenced the higher cytotoxicity of ATP-SeNPs in the caco-2 cell line than in HEK293 cells. ATP-SeNPs trigger the anticancer activity in the caco-2 cell line through the induction of mitochondrial membrane potential (MMP) loss and nucleus damage. The biocompatibility test of hemolysis and the egg CAM assay confirmed the non-toxicity of these nanoparticles. Overall, the results proved that the newly developed ATP-SeNPs exhibited higher cytotoxicity in the caco-2 cell line than SeNPs. However, further molecular and in vivo experiments are required to develop the ATP-SeNPs as a candidate drug for cancer-targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (X.Z.); (S.P.)
| |
Collapse
|
5
|
Park S, Saravanakumar K, Sathiyaseelan A, Park S, Hu X, Wang MH. Cellular antioxidant properties of nontoxic exopolysaccharide extracted from Lactobacillales (Weissella cibaria) isolated from Korean kimchi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
9
|
Saravanakumar K, Mariadoss AVA, Sathiyaseelan A, Venkatachalam K, Hu X, Wang MH. pH-sensitive release of fungal metabolites from chitosan nanoparticles for effective cytotoxicity in prostate cancer (PC3) cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Hu X, Venkatachalam K, Wang MH. Nucleolin targeted delivery of aptamer tagged Trichoderma derived crude protein coated gold nanoparticles for improved cytotoxicity in cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Molecular identification, volatile metabolites profiling, and bioactivities of an indigenous endophytic fungus (Diaporthe sp.). Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Ebrahimi N, Amirmahani F, Sadeghi B, Ghanaatian M. Trichoderma longibrachiatum derived metabolite as a potential source of anti‐breast‐cancer agent. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00705-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, Wang MH. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr Polym 2020; 245:116407. [PMID: 32718591 DOI: 10.1016/j.carbpol.2020.116407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
The present work was developed the pH dependent-aptamer AS1411 (APT) decorated and erlotinib (En) loaded chitosan nanoparticles (CSNPs) for promising non-small-cell lung carcinoma (NSCLC) treatment. The characterization studies revealed that formulated APT-En-CSNPs were spherical in shape with size of 165.95 d. nm and PDI of 0.212. FTIR spectrum recorded molecular chemical interactions with composition of En or En-CSNPs. Cell viability assay, flow cytometry and fluorescent microscopy results revealed that APT-En-CSNPs triggered cancer cell death through pH-sensitive and nucleolin receptor-targeted release of En. The decoration of the APT improved the cellular uptake of En as evidenced by cellular sensing fluorescence and BioTEM assay. The APT-En-CSNPs induced the apoptosis through excessive ROS generation, nucleus damage and Δψm loss in the A549 cells. Hence, the present study revealed that the APT-En-CSNPs improved the therapeutic efficiency of En in NSCLC through the nucleolin targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Anbazhagan Sathiyaseelan
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Arokia Vijaya Anand Mariadoss
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Elango Jeevithan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Sukjin Shin
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
14
|
Adnan M, Obyedul Kalam Azad M, Madhusudhan A, Saravanakumar K, Hu X, Wang MH, Ha CD. Simple and cleaner system of silver nanoparticle synthesis using kenaf seed and revealing its anticancer and antimicrobial potential. NANOTECHNOLOGY 2020; 31:265101. [PMID: 32143194 DOI: 10.1088/1361-6528/ab7d72] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The clean and eco-friendly synthesis of silver nanoparticles (AgNPs) has provided promising characteristics with impressive biomedical related potential. Here, we have employed a green process for the synthesis of AgNPs using kenaf seed (KS) extract as a bilateral mediator for reducing and capping of Ag+ ions under hydrothermal condition. The synthesis pathways, such as varying amounts of KS, Ag ion concentration and autoclaving time were optimized. The manifestation of a strong absorption peak from 420-430 nm in UV-vis spectroscopy indicated the successful synthesis of KS@AgNPs. Fourier transform infrared spectroscopy confirmed the presence of hydroxyl and carbonyl functionalities involved in the reduction and stabilization of Ag+ ions. Furthermore, transmission electron microscopy revealed that the KS@AgNPs are spherical in shape having a size around 7-11 nm, whereas high-quality crystals were evidenced by x-ray diffraction analysis. Moreover, inductively coupled plasma-optical emission spectrometry revealed that 19.6 μg l-1 of Ag+ ions were released from the KS@AgNPs. In cell line studies, KS@AgNPs at a higher dose were shown to be non-toxic to the healthy (NIH3T3) cells, while strong anti-proliferative response was found in the case of lung cancer (A549) cells. Furthermore, a significant zone of inhibition was observed for both Gram-positive and Gram-negative microorganisms, and a combination of KS@AgNPs with ampicillin revealed a notable synergistic anti-pathogenic effect. Overall, our study proved the potentiality of KS as an efficient bio-resource for the synthesis of AgNPs and also its original feature as an anti-cancer and antimicrobial agent.
Collapse
Affiliation(s)
- Md Adnan
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Kangwon daehakgil, Chuncheon-si, Kangwon-do 24341, Republic of Korea. Institute of Kenaf Co., Ltd., Chuncheon 24341, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Lopes ARDO, Locatelli GO, Barbosa RDM, Lobo Junior M, Moura Mascarin G, Lamenha Luna Finkler C. Preparation, characterisation and cell viability of encapsulated Trichoderma asperellum in alginate beads. J Microencapsul 2020; 37:270-282. [DOI: 10.1080/02652048.2020.1729884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Gabriel Olivo Locatelli
- Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Murillo Lobo Junior
- Laboratory of Agricultural Microbiology, Brazilian Agricultural Research Corporation, Embrapa Rice and Beans, Santo Antônio de Goiás, Brazil
| | - Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, Brazil
| | | |
Collapse
|
16
|
Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D. Antibiotics Development and the Potentials of Marine-Derived Compounds to Stem the Tide of Multidrug-Resistant Pathogenic Bacteria, Fungi, and Protozoa. Mar Drugs 2020; 18:E145. [PMID: 32121196 PMCID: PMC7142797 DOI: 10.3390/md18030145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
As the search for new antibiotics continues, the resistance to known antimicrobial compounds continues to increase. Many researchers around the world, in response to antibiotics resistance, have continued to search for new antimicrobial compounds in different ecological niches such as the marine environment. Marine habitats are one of the known and promising sources for bioactive compounds with antimicrobial potentials against currently drug-resistant strains of pathogenic microorganisms. For more than a decade, numerous antimicrobial compounds have been discovered from marine environments, with many more antimicrobials still being discovered every year. So far, only very few compounds are in preclinical and clinical trials. Research in marine natural products has resulted in the isolation and identification of numerous diverse and novel chemical compounds with potency against even drug-resistant pathogens. Some of these compounds, which mainly came from marine bacteria and fungi, have been classified into alkaloids, lactones, phenols, quinones, tannins, terpenes, glycosides, halogenated, polyketides, xanthones, macrocycles, peptides, and fatty acids. All these are geared towards discovering and isolating unique compounds with therapeutic potential, especially against multidrug-resistant pathogenic microorganisms. In this review, we tried to summarize published articles from 2015 to 2019 on antimicrobial compounds isolated from marine sources, including some of their chemical structures and tests performed against drug-resistant pathogens.
Collapse
Affiliation(s)
- Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka PMB 410001, Nigeria
| | - Florence N. Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka PMB 410001, Enugu State, Nigeria
| | - Gang Huang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yanming Li
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China;
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| |
Collapse
|
17
|
Chelliah R, Saravanakumar K, Daliri EBM, Kim JH, Lee JK, Jo HY, Kim SH, Ramakrishnan SR, Madar IH, Wei S, Rubab M, Barathikannan K, Ofosu FK, Subin H, Eun-Ji P, Yeong JD, Elahi F, Wang MH, Park JH, Ahn J, Kim DH, Park SJ, Oh DH. Unveiling the potentials of bacteriocin (Pediocin L50) from Pediococcus acidilactici with antagonist spectrum in a Caenorhabditis elegans model. Int J Biol Macromol 2019; 143:555-572. [PMID: 31785295 DOI: 10.1016/j.ijbiomac.2019.10.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Human-milk-based probiotics play a major role in the early colonization and protection of infants against gastrointestinal infection. We investigated potential probiotics in human milk. Among 41 Lactic acid bacteria (LAB) strains, four strains showed high antimicrobial activity against Escherichia coli 0157:H7, Listeria monocytogenes ATCC 15313, Bacillus cereus ATCC 14576, Staphylococcus aureus ATCC 19095, and Helicobacter pylori. The selected LAB strains were tested in simulated gastrointestinal conditions for their survival. Four LAB strains showed high resistance to pepsin (82%-99%), bile with pancreatine stability (96%-100%), and low pH (80%-94%). They showed moderate cell surface hydrophobicity (22%-46%), auto-aggregation abilities (12%-34%), and 70%-80% co-aggregation abilities against L. monocytogenes ATCC 15313, S. aureus ATCC 19095, B. cereus ATCC 14576, and E. coli 0157:H7. All four selected isolates were resistant to gentamicin, imipenem, novobiocin, tetracycline, clindamycin, meropenem, ampicillin, and penicillin. The results show that Pediococcus acidilatici is likely an efficient probiotic strain to produce < 3 Kda pediocin-based antimicrobial peptides, confirmed by applying amino acid sequences), using liquid chromatography mass spectrometry and HPLC with the corresponding sequences from class 2 bacteriocin, and based on the molecular docking, the mode of action of pediocin was determined on LipoX complex, further the 13C nuclear magnetic resonance structural analysis, which confirmed the antimicrobial peptide as pediocin.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Erom, Co., Ltd, Chuncheon, Gangwon-do 24427, South Korea
| | - Jung-Kun Lee
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Erom, Co., Ltd, Chuncheon, Gangwon-do 24427, South Korea
| | - Hyeon-Yeong Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | | | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Thiruchirappalli, Tamilnadu, India
| | - Shuai Wei
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Hwang Subin
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Park Eun-Ji
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Jung Da Yeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, Chonnam National University, Gwangju, South Korea
| | - Juhee Ahn
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Sung Jin Park
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
18
|
Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh DH, Vijayakumar S, Kathiresan K, Wang MH. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys 2019; 671:143-151. [PMID: 31283911 DOI: 10.1016/j.abb.2019.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Aptamer based drug delivery systems are gaining the importance in anticancer therapy due to their targeted drug delivery efficiency without harming the normal cells. The present work formulated the pH-dependent aptamer functionalized polymer-based drug delivery system against human lung cancer. The prepared aptamer functionalized doxorubicin (DOX) loaded poly (D, L-lactic-co-glycolic acid) (PLGA), poly (N-vinylpyrrolidone) (PVP) nanoparticles (APT-DOX-PLGA-PVP NPs) were spherical in shape with an average size of 87.168 nm. The crystallography and presence of the PLGA (poly (D, L-lactic-co-glycolic acid)) and DOX (doxorubicin) in APT-DOX-PLGA-PVP NPs were indicated by the X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and 1H and 13C nuclear magnetic resonance spectrometer (NMR). The pH-dependent aptamer AS1411 based drug release triggered the cancer cell death was evidenced by cytotoxicity assay, flow cytometry, and fluorescent microscopic imaging. In addition, the cellular uptake of the DOX was determined and the apoptosis-related signaling pathway in the A549 cells was studied by Western blot analysis. Further, the in vivo study revealed that mice treated with APT-DOX-PLGA-PVP NPs were significantly recovered from cancer as evident by mice weight and tumor size followed by the histopathological study. It was reported that the APT-DOX-PLGA-PVP NPs induced the apoptosis through the activation of the apoptosis-related proteins. Hence, the present study revealed that the APT-DOX-PLGA-PVP NPs improved the therapeutic efficiency through the nucleolin receptor endocytosis targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Sabarathinam Shanmugam
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Ponarulselvam Sekar
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Sekar Vijayakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
19
|
Wang L, Xu ML, Xin L, Ma C, Yu G, Saravanakumar K, Wang MH. Oxidative stress induced apoptosis mediated anticancer activity of Rhus typhina fruits extract in human colon cancer. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Saravanakumar K, Chelliah R, MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep 2019; 9:5787. [PMID: 30962456 PMCID: PMC6453883 DOI: 10.1038/s41598-019-42112-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) are gaining importance in health and environment. This study synthesized AgNPs using the bark extract of a plant, Toxicodendron vernicifluum (Tv) as confirmed by a absorption peak at 420 nm corresponding to the Plasmon resonance of AgNPs. The AgNPs were spherical, oval-shaped with size range of 2–40 nm as evident by field emission transmission electron microscopy (FE-TEM) and particle size analysis (PSA). The particles formed were crystalline by the presence of (111), (220) and (200) planes, as revealed by X ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The presence of amine, amide, phenolic, and alcoholic aromatics derived from Tv extract was found to be capping and or reducing agents as evident by Fourier-transform infrared spectroscopy (FTIR) spectra. The Tv-AgNPs were observed to be biocompatible to chick embryonic and NIH3T3 cells at various concentrations. Interestingly, Tv-AgNPs at the concentration of 320 µg. mL−1 induced 82.5% of cell death in human lung cancer, A549 cells and further 95% of cell death with annexin V FITC/PI based apoptosis. The Tv-AgNPs selectively targeted and damaged the cancer cells through ROS generation. The Tv-AgNPs displayed minimal inhibitory concentration (MIC) of 8.12 µg.mL−1 and 18.14 µg.mL−1 against STEC and H. pylori respectively. This multi-potent property of Tv-AgNPs was due to shape and size specific property that facilitated easy penetration into the bacterial and cancer cells for targeted therapy.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
21
|
Saravanakumar K, Wang MH. Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Non-Volatile Metabolites from Trichoderma spp. Metabolites 2019; 9:metabo9030058. [PMID: 30909487 PMCID: PMC6468342 DOI: 10.3390/metabo9030058] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/11/2023] Open
Abstract
The genus Trichoderma is comprised of many common fungi species that are distributed worldwide across many ecosystems. Trichoderma species are well-known producers of secondary metabolites with a variety of biological activities. Their potential use as biocontrol agents has been known for many years. Several reviews about metabolites from Trichoderma have been published. These reviews are based on their structural type, biological activity, or fungal origin. In this review, we summarize the secondary metabolites per Trichoderma species and elaborate on approximately 390 non-volatile compounds from 20 known species and various unidentified species.
Collapse
|
23
|
Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01526-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|