1
|
Hanot M, Lohou E, Sonnet P. Anti-Biofilm Agents to Overcome Pseudomonas aeruginosa Antibiotic Resistance. Pharmaceuticals (Basel) 2025; 18:92. [PMID: 39861155 PMCID: PMC11768670 DOI: 10.3390/ph18010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Pseudomonas aeruginosa is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients. This protective barrier also ensures cell growth on abiotic surfaces and thus enables bacterial survival on medical devices. Hence, as the WHO alerted to the need to develop new treatments, the use of anti-biofilm agents (ABAs) appeared as a promising approach. Given the selection pressure imposed by conventional antibiotics, a new therapeutic strategy has emerged that aims at reducing bacterial virulence without inhibiting cell growth. So-called anti-virulence agents (AVAs) would then restore the efficacy of conventional antibiotics (ATBs) or potentiate the effectiveness of the immune system. The last decade has seen the development of ABAs as AVAs against P. aeruginosa. This review aims to highlight the design strategy and critical features of these molecules to pave the way for further discoveries of highly potent compounds.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France; (M.H.); (E.L.)
| |
Collapse
|
2
|
Yang N, Aminov R, Franco OL, de la Fuente-Nunez C, Wang J. Editorial: Community series in antimicrobial peptides: Molecular design, structure function relationship and biosynthesis optimization. Front Microbiol 2023; 14:1125426. [PMID: 36726373 PMCID: PMC9885265 DOI: 10.3389/fmicb.2023.1125426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Affiliation(s)
- Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
4
|
Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 2020; 10:13206. [PMID: 32764602 PMCID: PMC7414031 DOI: 10.1038/s41598-020-69995-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
The use of non-standard toxicity models is a hurdle in the early development of antimicrobial peptides towards clinical applications. Herein we report an extensive in vitro and in vivo toxicity study of a library of 24 peptide-based antimicrobials with narrow spectrum activity towards veterinary pathogens. The haemolytic activity of the compounds was evaluated against four different species and the relative sensitivity against the compounds was highest for canine erythrocytes, intermediate for rat and human cells and lowest for bovine cells. Selected peptides were additionally evaluated against HeLa, HaCaT and HepG2 cells which showed increased stability towards the peptides. Therapeutic indexes of 50–500 suggest significant cellular selectivity in comparison to bacterial cells. Three peptides were administered to rats in intravenous acute dose toxicity studies up to 2–8 × MIC. None of the injected compounds induced any systemic toxic effects in vivo at the concentrations employed illustrating that the correlation between the different assays is not obvious. This work sheds light on the in vitro and in vivo toxicity of this class of promising compounds and provides insights into the relationship between the different toxicity models often employed in different manners to evaluate the toxicity of novel bioactive compounds in general.
Collapse
|
5
|
Porto WF, Irazazabal LN, Humblot V, Haney EF, Ribeiro SM, Hancock REW, Ladram A, Franco OL. EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochim Biophys Acta Gen Subj 2020; 1864:129633. [PMID: 32416198 DOI: 10.1016/j.bbagen.2020.129633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm. METHODS Antimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure. RESULTS Signal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide. CONCLUSION The strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents. GENERAL SIGNIFICANCE The process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Luz N Irazazabal
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Vincent Humblot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75252 Paris, France
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suzana M Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
6
|
de Oliveira Júnior NG, Franco OL. Promising strategies for future treatment of Klebsiella pneumoniae biofilms. Future Microbiol 2020; 15:63-79. [PMID: 32048525 DOI: 10.2217/fmb-2019-0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogenic bacterium that has the ability to aggregate as biofilm, representing one of the main agents in hospital infections, showing high rates of resistance to antibiotics. The K. pneumoniae biofilm aggregates are composed mainly of extracellular polysaccharides, eDNA and proteins. Besides, biofilms can attach to medical devices, such as endotracheal tubes and catheters, but are most dangerous on body surfaces. Here, we discuss the recent findings about the resistance mechanisms of K. pneumoniae biofilms, including genes and protein involved in 'classic', multidrug-resistant and hypervirulent strains, and also virulence factors. In addition, we also explore new strategies for possible treatment of these biofilms, and recently discovered molecules which may lead to future treatments.
Collapse
Affiliation(s)
- Nelson G de Oliveira Júnior
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900, Brazil
| |
Collapse
|