1
|
Park S, Jung S, Lee G, Lee E, Black R, Hong J, Jeong S. Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation. Adv Healthc Mater 2025:e2405219. [PMID: 40103525 DOI: 10.1002/adhm.202405219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Erin Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rodger Black
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Mirza Alizadeh A, Hosseini H, Mohseni M, Mohammadi M, Hashempour-Baltork F, Hosseini MJ, Eskandari S, Sohrabvandi S, Aminzare M. Bioremoval of lead (pb) salts from synbiotic milk by lactic acid bacteria. Sci Rep 2025; 15:9101. [PMID: 40097452 PMCID: PMC11914161 DOI: 10.1038/s41598-024-75726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 03/19/2025] Open
Abstract
The present study investigated the effects of five species of indigenous probiotic bacteria (Lactobacillus sp. and Bifidobacterium sp.) and prebiotic inulin on the decontamination of two Pb2+ salts (lead nitrate and lead acetate) in food models (low-fat, semi-fat, and high-fat milk). The average of the lowest and highest pH values was related to samples containing L. paracasei and L. acidophilus bacteria, as determined by pH change results. In most instances, adding inulin accelerated the pH-decreasing process, but the results were not particularly significant (p < 0.05). All probiotic strains were able to remove both forms of Pb salts, however, lead nitrate mitigation was significantly higher (p < 0.05). According to decontamination analysis, B. lactis was a native probiotic species with a high capacity for the absorption and biological elimination of Pb salts from milk medium (in low-, semi-, and high-fat milk, 94.41, 98.13, and 98.12% respectively). Except for low-fat milk, samples containing inulin showed greater Pb removal in semi-fat and high-fat milk than those without inulin. The findings of FTIR-ATR spectroscopy revealed that hydroxyl (OH), carbonyl (C = O), carboxylic (-COOH), phosphate (P = O), amine (-NH2), and amide (-C(= O) = N) functional groups are efficient in the absorption of Pb salts through electrostatic interactions on the cell surfaces of probiotics. The findings of this research highlighted the importance of using probiotic strains specific to the B. lactis BIA-6 species for those who are at risk of being exposed to Pb salts and other toxic components through diet.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Mohseni
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Mohammadi
- Department of Food Quality Control and Hygiene, Faculty of Medical Sciences and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soheyl Eskandari
- Food & Drug Laboratory Research Center (FDLRC), Food & Drug administration (IR-FDA), Ministry of Health and Medical Education (MoH+ME), Tehran, Iran
- Research Center for Food Hygiene and Safety, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Pingping W, Changli H, Qiaoyun L, Kegang W, Xianghua C, Xiong F, Yunping P, Chun C. Fructus Mori polysaccharides modulate the axial distribution of gut microbiota and fecal metabolites to improve symptoms of hyperglycemia in type 2 diabetic mice. Int J Biol Macromol 2025; 307:141949. [PMID: 40074112 DOI: 10.1016/j.ijbiomac.2025.141949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
To understand the gut microbiota composition in different intestinal segments is essential to clarify the structure-hypoglycemic relationship of Fructus Mori Polysaccharides (MFP). In this study, the spatial distribution of gut microbiota and fecal metabolites affected by MFP in type 2 diabetes mice was investigated using the 16S rRNA high-throughput sequencing technology and gas chromatography. The results showed that MFP could control body weight and reduce the blood glucose level. After MFP intervention, the abundance of Lactobacillus and Bifidobacterium increased by 3.43 and 33.47 times in the ascending colon mucus layer, and Prevotella increased by 102.25 times in the transverse colon content, while Helicobacter and Treponspirillum was reduced by 99.28 % and 79.38 % in the ascending colon mucus layer, and Ruminococcus reduced by 68.77 % in the cecum contents. Moreover, the MFP increased the contents of short-chain fatty acids (SCFAs) with significantly difference along the longitudinal axis of intestine. The results suggested that the MFP relieve the hyperglycemia of diabetic may through modulating the microorganism in ascending colon mucus layer, transverse colon content and cecum.
Collapse
Affiliation(s)
- Wang Pingping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Laborary of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China
| | - Hu Changli
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Li Qiaoyun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, Zhuhai 519715, China
| | - Wu Kegang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chai Xianghua
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, Zhuhai 519715, China; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Peng Yunping
- Guangzhou Wondfo Health Technology Co., LTD, Guangzhou 510663, China.
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, Zhuhai 519715, China; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
4
|
Liu CQ, Yang J, Ren HF, Liao GN, Yin Z, Gao SL, Du QJ, Yuan XZ, Ullah H, Li K. Diversity of intestinal microbiota and inflammatory cytokines after severe trauma. Sci Rep 2025; 15:7955. [PMID: 40055423 PMCID: PMC11889259 DOI: 10.1038/s41598-025-92212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Accumulating evidence has reported that the intestinal microbiota could play important roles in the occurrence and progression of severe trauma. However, the hypothesized potential targeted intestinal microbiota to mediate and regulate the levels of inflammatory cytokines and promote rapid recovery of body after severe trauma remains unclear. This study was aimed to explore the changes and correlation of intestinal microbiota and inflammatory cytokines in rats with severe crush and fracture trauma. The controlled laboratory study design was used, and a crush and fracture severe trauma rat model was established. 16S rRNA high-throughput gene sequencing and ELISA were used to analyze the changes in intestinal microbiota and inflammatory cytokines within one week after trauma. The correlation between intestinal microbiota and inflammatory cytokines was also analyzed. Loss of overall diversity and expansion of intestinal microbiota in the rats due to severe trauma was observed. Specifically, there was a significant increase in the abundance of Muribaculaceae [LDA (Linear Discriminant Analysis)-value = 4.814, P = 0.014] after severe trauma, while Prevotella (LDA-value = 5.235, P = 0.020) and Alloprevotella (LDA-value = 4.443, P = 0.015) were slightly lower in the trauma group than in the control group. The levels of inflammatory cytokines (IL-1α, IL-6, IL-8 and TNF-α) in the trauma group decreased from the first day to the third day and continued to increase until one week after the trauma. Prevotellaceae_UCG_001 was correlated with TNF-a (R = 0.411, P = 0.033); Lactobacillus was negatively correlated with IL-6 (R = - 0.434, P = 0.024) and IL-1α (R = - 0.419, P = 0.030) and positively correlated with IL-8 (R = 0.391, P = 0.045); and Lachnospiraceae_NK4A136_group (R = - 0.559, P = 0.027) and Muribaculaceae (R = - 0.568, P = 0.024) were negatively correlated with IL-8. Severe trauma shows stress-like activities by negatively modulating intestinal microbiota and affecting certain inflammatory cytokines contributing to host health, which implies that the regulation of potentially targeted intestinal microbiota, and further mediating and maintaining the homeostasis of inflammatory cytokines, is expected to promote the accelerating recovery of the body after severe trauma.
Collapse
Affiliation(s)
- Chang-Qing Liu
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jie Yang
- Department of Colorectal Tumour Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hong-Fei Ren
- Department of Gastroenterology of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Guang-Neng Liao
- Animal Experiment Center of West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhe Yin
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shi-Lin Gao
- Department of Colorectal Tumour Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qiu-Jing Du
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xing-Zhu Yuan
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hanif Ullah
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Ka Li
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, Guarino MPL, Porro D, Cerasa A, Lo Dico A, Altomare A, Bertoli G. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int J Mol Sci 2025; 26:413. [PMID: 39796266 PMCID: PMC11720538 DOI: 10.3390/ijms26010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Bruno Giovanni Galuzzi
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elena Imperia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Clarissa Gervasoni
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Remedia
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
| | - Laura Restaneo
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Martina Nespoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Laura De Gara
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Flaminia Tani
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Danilo Porro
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
6
|
Salahi A, Abd El-Ghany WA. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1336-1347. [PMID: 38689488 DOI: 10.1111/jpn.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The production of healthy food is one of the basic requirements and challenges. Research efforts have been introduced in the human's food industry to reduce the microbial resistance and use safe and healthy alternatives with a high durability. However, the conducted work about these issues in the field of livestock animal production have been started since 2015. Inappropriate and extensive use of antibiotics has resulted in the increase of antimicrobial resistance, presence of drug residues in tissues, and destruction of the gut microbiome. Therefore, discovering and developing antibiotic substitutes were urgent demands. Probiotic compounds containing living micro-organisms are important antibiotic alternative that have been beneficially and extensively used in humans, animals, and poultry. However, some probiotics show some obstacles during production and applications. Accordingly, this review article proposes a comprehensive description of the next-generation of probiotics including postbiotics, proteobiotics, psychobiotics, immunobiotics and paraprobiotics and their effects on poultry production and human's therapy. These compounds proved great efficiency in terms of restoring gut health, improving performance and general health conditions, modulating the immune response and reducing the pathogenic micro-organisms. However, more future research work should be carried out regarding this issue.
Collapse
Affiliation(s)
- Ahmad Salahi
- Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
8
|
Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, Tu M, Pan D. New clues for postbiotics to improve host health: a review from the perspective of function and mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6376-6387. [PMID: 38450745 DOI: 10.1002/jsfa.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jiamin Shen
- Zhejiang Shenjinji Food Technology Co., LTD, Huzhou, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
10
|
Long AE, Pitta D, Hennessy M, Indugu N, Vecchiarelli B, Luethy D, Aceto H, Hurcombe S. Assessment of fecal bacterial viability and diversity in fresh and frozen fecal microbiota transplant (FMT) product in horses. BMC Vet Res 2024; 20:306. [PMID: 38987780 PMCID: PMC11234551 DOI: 10.1186/s12917-024-04166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Currently, lack of standardization for fecal microbiota transplantation (FMT) in equine practice has resulted in highly variable techniques, and there is no data on the bacterial metabolic activity or viability of the administered product. The objectives of this study were to compare the total and potentially metabolically active bacterial populations in equine FMT, and assess the effect of different frozen storage times, buffers, and temperatures on an equine FMT product. Fresh feces collected from three healthy adult horses was subjected to different storage methods. This included different preservation solutions (saline plus glycerol or saline only), temperature (-20 °C or -80 °C), and time (fresh, 30, 60, or 90 days). Samples underwent DNA extraction to assess total bacterial populations (both live and dead combined) and RNA extraction followed by reverse transcription to cDNA as a proxy to assess viable bacteria, then 16s rRNA gene amplicon sequencing using the V1-V2 region. RESULTS The largest difference in population indices and taxonomic composition at the genus level was seen when evaluating the results of DNA-based (total) and cDNA-based (potentially metabolically active) extraction method. At the community level, alpha diversity (observed species, Shannon diversity) was significantly decreased in frozen samples for DNA-based analysis (P < 0.05), with less difference seen for cDNA-based sequencing. Using DNA-based analysis, length of storage had a significant impact (P < 0.05) on the bacterial community profiles. For potentially metabolically active populations, storage overall had less of an effect on the bacterial community composition, with a significant effect of buffer (P < 0.05). Individual horse had the most significant effect within both DNA and cDNA bacterial communities. CONCLUSIONS Frozen storage of equine FMT material can preserve potentially metabolically active bacteria of the equine fecal microbiome, with saline plus glycerol preservation more effective than saline alone. Larger studies are needed to determine if these findings apply to other individual horses. The ability to freeze FMT material for use in equine patients could allow for easier clinical use of fecal transplant in horses with disturbances in their intestinal microbiome.
Collapse
Affiliation(s)
- Alicia E Long
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA.
| | - Dipti Pitta
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Meagan Hennessy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Nagaraju Indugu
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Daniela Luethy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Helen Aceto
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Samuel Hurcombe
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
- Veterinary Innovative Partners, New York, NY, USA
| |
Collapse
|
11
|
Dupouy-Manescau N, Méric T, Sénécat O, Drut A, Valentin S, Leal RO, Hernandez J. Updating the Classification of Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:681. [PMID: 38473066 DOI: 10.3390/ani14050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) in dogs are currently classified based on response to sequential treatment trials into food-responsive (FREs); antibiotic-responsive (AREs); immunosuppressant-responsive (IREs); and non-responsive enteropathies (NREs). Recent studies have reported that a proportion of NRE dogs ultimately respond to further dietary trials and are subsequently misclassified. The FRE subset among CIEs is therefore probably underestimated. Moreover, alterations in the gut microbiota composition and function (dysbiosis) have been shown to be involved in CIE pathogenesis in recent research on dogs. Metronidazole and other antibiotics that have been used for decades for dogs with AREs have been demonstrated to result in increased antimicrobial resistance and deleterious effects on the gut microbiota. As a consequence, the clinical approach to CIEs has evolved in recent years toward the gradual abandonment of the use of antibiotics and their replacement by other treatments with the aim of restoring a diverse and functional gut microbiota. We propose here to refine the classification of canine CIEs by replacing the AREs category with a microbiota-related modulation-responsive enteropathies (MrMREs) category.
Collapse
Affiliation(s)
- Noémie Dupouy-Manescau
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Tristan Méric
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Odile Sénécat
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Amandine Drut
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| | - Suzy Valentin
- Hopia, Bozon Veterinary Clinic, 78280 Guyancourt, France
| | - Rodolfo Oliveira Leal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Juan Hernandez
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
13
|
Kavita, Om H, Chand U, Kushawaha PK. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol Res 2024; 279:127550. [PMID: 38016379 DOI: 10.1016/j.micres.2023.127550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent gastrointestinal (GI) tract inflammatory disease characterized by downregulated mucosal immune activities and a disrupted microbiota environment in the intestinal lumen. The involvement of bacterium postbiotics as mediators between the immune system and gut microbiome could be critical in determining why host-microbial relationships are disrupted in IBD. Postbiotics including Short-chain fatty acids (SCFAs), Organic acids, Proteins, Vitamins, Bacteriocins, and Tryptophan (Trp) are beneficial bioactive compounds formed via commensal microbiota in the gut environment during the fermentation process that can be used to improve consumer health. The use of metabolites or fragments from microorganisms can be a very attractive treatment and prevention technique in modern medicine. Postbiotics are essential in the immune system's development since they alter the barrier tightness, and the gut ecology and indirectly shape the microbiota's structure. As a result, postbiotics may be beneficial in treating or preventing various diseases, even some for which there is no effective causative medication. Postbiotics may be a promising tool for the treatment of IBD in individuals of all ages, genders, and even geographical locations. Direct distribution of postbiotics may provide a new frontier in microbiome-based therapy for IBD since it allows both the management of host homeostasis and the correction of the negative implications of dysbiosis. Further studies of the biological effects of these metabolites are expected to reveal innovative applications in medicine and beyond. This review attempts to explore the possible postbiotic-based interventions for the treatment of IBD.
Collapse
Affiliation(s)
- Kavita
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Hari Om
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
14
|
Feješ A, Belvončíková P, Porcel Sanchis D, Borbélyová V, Celec P, Džunková M, Gardlík R. The Effect of Cross-Sex Fecal Microbiota Transplantation on Metabolism and Hormonal Status in Adult Rats. Int J Mol Sci 2024; 25:601. [PMID: 38203771 PMCID: PMC10778742 DOI: 10.3390/ijms25010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing evidence of sexual dimorphism in the pathophysiology of metabolic complications caused by sex steroids is under investigation. The gut microbiota represents a complex microbial ecosystem involved in energy metabolism, immune response, nutrition acquisition, and the health of host organisms. Gender-specific differences in composition are present between females and males. The purpose of this study was to use cross-sex fecal microbiota transplantation (FMT) for the detection of sex-dependent metabolic, hormonal, and gut microbiota changes in female and male recipients. Healthy non-obese female and male Wistar rats were divided into donor, same-sex, and cross-sex recipient groups. After a 30-day period of FMT administration, biochemical markers (glucose and lipid metabolism) and sex hormones were measured, and the gut microbiota was analyzed. The cross-sex male recipients displayed a significantly lower testosterone concentration compared to the males that received same-sex FMT. Sex-dependent changes caused by cross-sex FMT were detected, while several bacterial taxa correlated with plasma testosterone levels. This study represents the first to study the effect of cross-sex changes in the gut microbiome concerning metabolic and hormonal changes/status in adult non-obese Wistar rats. Herein, we present cross-sex FMT as a potential tool to modify sex-specific pathologies.
Collapse
Affiliation(s)
- Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Paulína Belvončíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| |
Collapse
|
15
|
Cantorna MT, Arora J. Vitamin D, microbiota, and inflammatory bowel disease. FELDMAN AND PIKE'S VITAMIN D 2024:1057-1073. [DOI: 10.1016/b978-0-323-91338-6.00047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Razali FN, Teoh WY, Ramli MZ, Loo CY, Gnanaraj C. Role of prebiotics, probiotics, and synbiotics in the management of colonic disorders. ADVANCED DRUG DELIVERY SYSTEMS FOR COLONIC DISORDERS 2024:243-270. [DOI: 10.1016/b978-0-443-14044-0.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
18
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
20
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
21
|
Aggeletopoulou I, Marangos M, Assimakopoulos SF, Mouzaki A, Thomopoulos K, Triantos C. Vitamin D and Microbiome: Molecular Interaction in Inflammatory Bowel Disease Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00055-X. [PMID: 36868465 DOI: 10.1016/j.ajpath.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Studies of systemic autoimmune diseases point to characteristic microbial patterns in various diseases, including inflammatory bowel disease (IBD). Autoimmune diseases, and IBD in particular, show a predisposition to vitamin D deficiency, leading to alterations in the microbiome and disruption of intestinal epithelial barrier integrity. In this review, we examine the role of the gut microbiome in IBD and discuss how vitamin D-vitamin D receptor (VDR)-associated molecular signaling pathways contribute to the development and progression of IBD through their effects on gut barrier function, the microbial community, and immune system function. The present data demonstrate that vitamin D promotes the proper function of the innate immune system by acting as an immunomodulator, exerting anti-inflammatory effects, and critically contributing to the maintenance of gut barrier integrity and modulation of the gut microbiota, mechanisms that may influence the IBD development and progression. VDR regulates the biological effects of vitamin D and is related to environmental, genetic, immunologic, and microbial aspects of IBD. Vitamin D influences the distribution of the fecal microbiota, with high vitamin D levels associated with increased levels of beneficial bacterial species and lower levels of pathogenic bacteria. Understanding the cellular functions of vitamin D-VDR signaling in intestinal epithelial cells may pave the way for the development of new treatment strategies for the therapeutic armamentarium of IBD in the near future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece; Division of Hematology, Department of Internal Medicine, Laboratory of Immunohematology, Medical School, University Hospital of Patras, Patras, Greece.
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Laboratory of Immunohematology, Medical School, University Hospital of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
22
|
Dhami M, Raj K, Singh S. Relevance of Gut Microbiota to Alzheimer's Disease (AD): Potential Effects of Probiotic in Management of AD. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
23
|
Wu S, Yang S, Wang M, Song N, Feng J, Wu H, Yang A, Liu C, Li Y, Guo F, Qiao J. Quorum sensing-based interactions among drugs, microbes, and diseases. SCIENCE CHINA. LIFE SCIENCES 2023; 66:137-151. [PMID: 35933489 DOI: 10.1007/s11427-021-2121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
Many diseases and health conditions are closely related to various microbes, which participate in complex interactions with diverse drugs; nonetheless, the detailed targets of such drugs remain to be elucidated. Many existing studies have reported causal associations among drugs, gut microbes, or diseases, calling for a workflow to reveal their intricate interactions. In this study, we developed a systematic workflow comprising three modules to construct a Quorum Sensing-based Drug-Microbe-Disease (QS-DMD) database ( http://www.qsdmd.lbci.net/ ), which includes diverse interactions for more than 8,000 drugs, 163 microbes, and 42 common diseases. Potential interactions between microbes and more than 8,000 drugs have been systematically studied by targeting microbial QS receptors combined with a docking-based virtual screening technique and in vitro experimental validations. Furthermore, we have constructed a QS-based drug-receptor interaction network, proposed a systematic framework including various drug-receptor-microbe-disease connections, and mapped a paradigmatic circular interaction network based on the QS-DMD, which can provide the underlying QS-based mechanisms for the reported causal associations. The QS-DMD will promote an understanding of personalized medicine and the development of potential therapies for diverse diseases. This work contributes to a paradigm for the construction of a molecule-receptor-microbe-disease interaction network for human health that may form one of the key knowledge maps of precision medicine in the future.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shujuan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Manman Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China. .,Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China.
| |
Collapse
|
24
|
Novel Horizons in Postbiotics: Lactobacillaceae Extracellular Vesicles and Their Applications in Health and Disease. Nutrients 2022; 14:nu14245296. [PMID: 36558455 PMCID: PMC9782203 DOI: 10.3390/nu14245296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus probiotics contained in dietary supplements or functional foods are well-known for their beneficial properties exerted on host health and diverse pathological situations. Their capacity to improve inflammatory bowel disease (IBD) and regulate the immune system is especially remarkable. Although bacteria-host interactions have been thought to occur directly, the key role that extracellular vesicles (EVs) derived from probiotics play on this point is being unveiled. EVs are lipid bilayer-enclosed particles that carry a wide range of cargo compounds and act in different signalling pathways. Notably, these EVs have been recently proposed as a safe alternative to the utilisation of live bacteria since they can avoid the possible risks that probiotics may entail in vulnerable cases such as immunocompromised patients. Therefore, this review aims to give an updated overview of the existing knowledge about EVs from different Lactobacillus strains, their mechanisms and effects in host health and different pathological conditions. All of the information collected suggests that EVs could be considered as potential tools for the development of future novel therapeutic approaches.
Collapse
|
25
|
Chen KH, Lin HS, Li YC, Sung PH, Chen YL, Yin TC, Yip HK. Synergic Effect of Early Administration of Probiotics and Adipose-Derived Mesenchymal Stem Cells on Alleviating Inflammation-Induced Chronic Neuropathic Pain in Rodents. Int J Mol Sci 2022; 23:ijms231911974. [PMID: 36233275 PMCID: PMC9570240 DOI: 10.3390/ijms231911974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
This study investigated the hypothesis that probiotics enhanced the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on alleviating neuropathic pain (NP) due to chronic constriction injury (CCI) mainly through regulating the microbiota in rats. SD rats (n = 50) were categorized into group 1 (sham-control), group 2 (NP), group 3 (NP + probiotics (i.e., 1.5 billion C.F.U./day/rat, orally 3 h after NP procedure, followed by QOD 30 times)), group 4 (NP + ADMSCs (3.0 × 105 cells) 3 h after CCI procedure, followed by QOD six times (i.e., seven times in total, i.e., mimic a clinical setting of drug use) and group 5 (NP + probiotics + ADMSCs (3.0 × 105 cells)) and euthanized by day 60 after NP induction. By day 28 after NP induction, flow-cytometric analysis showed circulating levels of early (AN-V+/PI−) and late (AN-V+/PI+) apoptotic, and three inflammatory (CD11b-c+, Ly6G+ and MPO+) cells were lowest in group 1 and significantly progressively reduced in groups 2 to 5 (all p < 0.0001). By days 7, 14, 21, 28, and 60 after CCI, the thresholds of thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT) were highest in group 1 and significantly progressively increased in groups 2 to 5 (all p < 0.0001). Numbers of pain-connived cells (Nav1.8+/peripherin+, p-ERK+/peripherin+, p-p38+/peripherin+ and p-p38+/NF200+) and protein expressions of inflammatory (p-NF-κB, IL-1ß, TNF-α and MMP-9), apoptotic (cleaved-caspase-3, cleaved-PARP), oxidative-stress (NOX-1, NOX-2), DNA-damaged (γ-H2AX) and MAPK-family (p-P38, p-JNK, p-ERK1/2) biomarkers as well as the protein levels of Nav.1.3, Nav.1.8, and Nav.1.9 in L4-L5 in dorsal root ganglia displayed an opposite pattern of mechanical PWT among the groups (all p < 0.0001). In conclusion, combined probiotic and ADMSC therapy was superior to merely one for alleviating CCI-induced NP mainly through suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, China
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| |
Collapse
|
26
|
Li Q, Li N, Cai W, Xiao M, Liu B, Zeng F. Fermented natural product targeting gut microbiota regulate immunity and anti-inflammatory activity: A possible way to prevent COVID-19 in daily diet. J Funct Foods 2022; 97:105229. [PMID: 36034155 PMCID: PMC9393180 DOI: 10.1016/j.jff.2022.105229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Low immune function makes the body vulnerable to being invaded by external bacteria or viruses, causing influenza and inflammation of various organs, and this trend is shifting to the young and middle-aged group. It has been pointed out that natural products fermented by probiotic have benign changes about their active ingredients in some studies, and it have shown strong nutritional value in anti-oxidation, anti-aging, regulating lipid metabolism, anti-inflammatory and improving immunity. In recent years, the gut microbiota plays a key role and has been extensively studied in improving immunity and anti-inflammation activity. By linking the relationship between natural products fermented by probiotic, gut microbiota, immunity, and inflammation, this review presents the modulating effects of probiotics and their fermented natural products on the body, including immunity-enhancing and anti-inflammatory activities by modulating gut microbiota, and it is discussed that the current understanding of its molecular mechanisms. It may become a possible way to prevent COVID-19 through consuming natural products fermented by probiotic in our daily diet.
Collapse
Affiliation(s)
- Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Shi MY, Liu L, Yang FY. Strategies to improve the effect of mesenchymal stem cell therapy on inflammatory bowel disease. World J Stem Cells 2022; 14:684-699. [PMID: 36188115 PMCID: PMC9516464 DOI: 10.4252/wjsc.v14.i9.684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.
Collapse
Affiliation(s)
- Meng-Yue Shi
- School of Medicine, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Fu-Yuan Yang
- Health Science Center, Yangtze University, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
28
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
29
|
Triantos C, Aggeletopoulou I, Mantzaris GJ, Mouzaki Α. Molecular basis of vitamin D action in inflammatory bowel disease. Autoimmun Rev 2022; 21:103136. [DOI: 10.1016/j.autrev.2022.103136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
|
30
|
Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022; 10:microorganisms10071330. [PMID: 35889049 PMCID: PMC9317605 DOI: 10.3390/microorganisms10071330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency anemia (IDA) is very common and affects approximately 1/3 of the world’s human population. There are strong research data that some probiotics, such as Lactobacillus acidophilus and Bifidobacterium longum improve iron absorption and influence the course of anemia. Furthermore, prebiotics, including galactooligosaccharides (GOS) and fructooligosaccharides (FOS), increase iron bioavailability and decrease its destructive effect on the intestinal microbiota. In addition, multiple postbiotics, which are probiotic metabolites, including vitamins, short-chain fatty acids (SCFA), and tryptophan, are involved in the regulation of intestinal absorption and may influence iron status in humans. This review presents the actual data from research studies on the influence of probiotics, prebiotics, and postbiotics on the prevention and therapy of IDA and the latest findings regarding their mechanisms of action. A comparison of the latest research data and theories regarding the role of pre-, post-, and probiotics and the mechanism of their action in anemias is also presented and discussed.
Collapse
|
31
|
Dong Y, Liao W, Tang J, Fei T, Gai Z, Han M. Bifidobacterium BLa80 mitigates colitis by altering gut microbiota and alleviating inflammation. AMB Express 2022; 12:67. [PMID: 35670877 PMCID: PMC9174416 DOI: 10.1186/s13568-022-01411-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to explore the therapeutic effect of the probiotic Bifidobacterium animalis subsp. lactis BLa80 on inflammatory bowel disease. A model of ulcerative colitis (UC) was induced in C57BL/6 mice by administering of 2.5% dextran sulphate sodium (DSS) for 8 days. After developing UC, some mice were treated via intragastric administration of BLa80 at a dose of 109 colony-forming units to assess the preventive effects of BLa80 on DSS-induced UC. Compared with non-treated UC model mice, BLa80-treated mice had reduced colon shortening and improvements in colonic tissue structure. Treatment with BLa80 also decreased the serum concentrations of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6 and IL-17 in mice. 16S rRNA gene sequencing revealed that BLa80 increased gut microbial diversity in mice and modulated UC-associated imbalances in the gut microbiota. BLa80 selectively promoted the growth of beneficial bacteria, including Romboutsia and Adlercreutzia, the abundances of which were negatively correlated with concentration of cellular inflammatory factors. In summary, the study results demonstrated that pretreatment with B. lactis BLa80 reduced intestinal inflammation and altered the gut microbiota, implying that BLa80 is a promising probiotic strain with potential therapeutic function in UC.
Collapse
Affiliation(s)
- Yao Dong
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Wujiang Bridge Road, 1033, Suzhou, Jiangsu, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Jing Tang
- Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China
| | - Teng Fei
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Wujiang Bridge Road, 1033, Suzhou, Jiangsu, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Wujiang Bridge Road, 1033, Suzhou, Jiangsu, China
| | - Mei Han
- Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China.
| |
Collapse
|
32
|
Li S, Yang S, Zhang Y, Huang K, Liang T, Chen Y, Guan Y, Shang R, Guan T, Wu J, Chen Y, Guan X. Amino acid-balanced diets improved DSS-induced colitis by alleviating inflammation and regulating gut microbiota. Eur J Nutr 2022; 61:3531-3543. [PMID: 35618921 DOI: 10.1007/s00394-022-02906-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Inflammatory bowel disease (IBD) is a multifactorial chronic disease of the gastrointestinal tract. Dietary intervention in the treatment of IBD has gradually attracted more attention. In this study, amino acid-balanced diets (AABD) based on grains were developed and their influences on the regulation of IBD were investigated. METHODS Dextran sodium sulfate (DSS)-induced acute colitis mice model was employed to evaluate the effects of AABD. Pathological symptoms, intestinal inflammation, gut barrier proteins and gut microbiota were determined after AABD intake. RESULTS It was shown that AABD alleviated the symptoms of colitis by reducing the histological scores of mice colon, suppressing the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and upregulating the expression of tight junction proteins. Analysis of gut microbiota revealed that AABD altered the structure of gut microbiota by decreasing the abundance and richness of harmful bacteria induced by DSS (Escherichia-Shigella, Parasutterella, etc.) and increasing that of beneficial bacteria (Akkermansia, etc.). Correlation analysis indicated that the alterations of pro-inflammatory factors were related with the change of microbiota, suggesting that the inhibitory effects of AABD on inflammation might be due to its regulation gut microbiota. CONCLUSION The AABD could efficiently mitigate colitis, and this study indicated that AABD could be applied as a promising dietary regulation strategy of IBD.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Shuya Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ting Liang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yingjie Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ruizhi Shang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Tong Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Jiang Wu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China. .,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China.
| |
Collapse
|
33
|
Ren S, Wang C, Chen A, Lv W, Gao R. The Probiotic Lactobacillus paracasei Ameliorates Diarrhea Cause by Escherichia coli O8via Gut Microbiota Modulation1. Front Nutr 2022; 9:878808. [PMID: 35662940 PMCID: PMC9159302 DOI: 10.3389/fnut.2022.878808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Koumiss is a fermented horse milk food containing abundant probiotics. Lactobacillus paracasei is a bacterial strain isolated from koumiss that helps regulate the intestinal microbiota. One of the major cause of diarrhea is an imbalance of the intestinal flora. The aim of this study was to investigate whether Lactobacillus paracasei can ameliorate E. coli-induced diarrhea and modulate the gut microbiota. Methods Mouse models of diarrhea were established via intragastric E. coli O8 administration. We then attempted to prevent or treat diarrhea in the mice via intragastric administration of a 3 × 108 CFU/mL L. paracasei cell suspension. The severity of diarrhea was evaluated based on the body weight, diarrhea rate, and index, fecal diameter, ileum injury, hematoxylin-eosin (H&E) staining, and diamine oxidase (DAO) and zonulin expression. Expression of the tight junction (TJ) proteins claudin-1, occludin, and zona occludens (ZO-)1 were detected by immunohistochemistry (IHC). Gastrointestinal mRNA expression levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were detected by real-time polymerase chain reaction (RT-PCR). The microbial composition was analyzed by 16s rRNA sequencing. Results The L. paracasei demonstrated excellent therapeutic efficacy against diarrhea. It elevated the TJ protein levels and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and p65, myosin light chain 2 (MLC2), myosin light chain kinase (MLCK). Moreover L. paracasei increased those bacteria, which can product short-chain fatty acid (SCFA) such Alistipes, Odoribacter, Roseburia, and Oscillibacter. Conclusion L. paracasei ameliorated diarrhea by inhibiting activation of the nuclear factor kappa B (NF-κB)-MLCK pathway and increasing the abundance of gut microbiota that produce SCFA.
Collapse
Affiliation(s)
- Shunan Ren
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Chunjie Wang,
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijuan Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
34
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
35
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
36
|
Noguera-Navarro C, Navas-Carrillo D, Orenes-Piñero E. Gut microbiota alterations and nutritional intervention in multiple sclerosis disease. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Clara Noguera-Navarro
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
37
|
Yang S, Zhang C, Xu W, Li D, Feng Y, Wu J, Luo W, Du X, Du Z, Huang X. Heat Stress Decreases Intestinal Physiological Function and Facilitates the Proliferation of Harmful Intestinal Microbiota in Sturgeons. Front Microbiol 2022; 13:755369. [PMID: 35356512 PMCID: PMC8959899 DOI: 10.3389/fmicb.2022.755369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Heat is a common source of stress in aquatic environments and can alter the physiological and metabolic functions of aquatic animals, especially their intestinal function. Here, the effects of heat stress on the structure and function of the intestine and the characteristics of the intestinal microbiota were studied in sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂ hybrid F1). Sturgeons were exposed to sub-extreme (24°C) and extreme (28°C) high water temperatures for 12 days. The heat stress caused systemic damage to the intestine of sturgeons, which displayed severe enteritis in the valve intestine. The microbial diversity analysis showed that heat stress led to the disorder in intestinal microbiota, manifesting as an explosive increase in the abundance of thermophilic intestinal pathogens such as Plesiomonas, Cetobacterium, and Aeromonas and causing physiological dysfunction in the sturgeons. The disorder was followed by significant inhibition of intestinal digestion with reduced chymotrypsin, α-amylase, and lipase activities in the valve intestine and of antioxidant function with reduced peroxidase (POD) and catalase (CAT) activities. Simultaneously, heat stress reduced the thermal tolerance of sturgeons by reducing Grp75 expression and damaged the valve intestine’s repair ability with increased Tgf-β expression. The results confirmed that heat stress damaged the sturgeon intestines obviously and disturbed the intestinal microbiota, resulting in serious physiological dysfunction. The present study investigated the mechanism of the effect of heat stress on the sturgeon intestine and will help develop strategies to improve the resistance to thermal stress for wild and cultured sturgeons.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Chaoyang Zhang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Wenqiang Xu
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Datian Li
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Yang Feng
- Basic Veterinary Science, Sichuan Agricultural University, Chengdu, China
| | - Jiayun Wu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wei Luo
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaogang Du
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zongjun Du
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Li Q, Wu W, Fang X, Chen H, Han Y, Liu R, Niu B, Gao H. Structural characterization of a polysaccharide from bamboo (Phyllostachys edulis) shoot and its prevention effect on colitis mouse. Food Chem 2022; 387:132807. [PMID: 35397273 DOI: 10.1016/j.foodchem.2022.132807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
A water-soluble dietary fiber named BSDF-1 (polysaccharide) was isolated from the bamboo (Phyllostachys edulis) shoot. BSDF-1was characterized as a backbone consisting predominately of 1,4-linked Glcp, and the protective effects and mechanisms of the anti-inflammatory activity were investigated using a dextran sulfate sodium (DSS)-induced colitis mouse model. BSDF-1 administration significantly reduced colonic pathological damage, inhibited the activation of inflammatory signaling pathways, including nuclear factor-kappa B and NLR family pyrin domain containing 3 inflammasomes pathways. It restored the mRNA expression of tight junction proteins, including zonula occludens-1, claudin-1, and occludin. Furthermore, BSDF-1 treatment reduced Parabacteroides, Mucispirillum, Helicobacter, Bacteroides, and Streptococcus levels, whereas high-dose BSDF-1 treatment increased Prevotella, Alitipes, Anaerostipes, Odoribacter, Bifidobacterium, Butyricimonas, and Lactobacillus levels. In conclusion, BSDF-1 can inhibit the activation of inflammatory signaling pathways and restore the intestinal barrier function. Thus, BSDF-1 may be a valuable food supplement or nutraceutical to manage and prevent ulcerative colitis.
Collapse
Affiliation(s)
- Qi Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Yanchao Han
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ben Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| |
Collapse
|
39
|
He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr 2022; 63:8048-8065. [PMID: 35319324 DOI: 10.1080/10408398.2022.2054934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.
Collapse
Affiliation(s)
- Bao-Lin He
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Yong Xiong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
40
|
Ghoshal UC, Yadav A, Fatima B, Agrahari AP, Misra A. Small intestinal bacterial overgrowth in patients with inflammatory bowel disease: A case-control study. Indian J Gastroenterol 2022; 41:96-103. [PMID: 34390471 DOI: 10.1007/s12664-021-01211-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Though small intestinal bacterial overgrowth (SIBO) is known in inflammatory bowel disease (IBD), the data on it are scanty and have limitations. METHODS Data on IBD patients undergoing glucose hydrogen breath test (GHBT) were retrospectively analyzed to evaluate the frequency and risk factors of SIBO in IBD compared to 66 healthy controls. RESULTS Patients with IBD (n=86; 45 ulcerative colitis [UC] and 41 Crohn's disease [CD]) more often had SIBO on GHBT than the healthy subjects (16/86 [18.6%] vs. 1/66 [1.5%]; p=0.002). SIBO was commoner among patients with CD than UC (14/41 [34.1%] vs. 2/45 [4.4%]; p=0.001). The frequency of SIBO among UC patients was comparable to healthy subjects (2/45 [4.4%] vs. 1/66 [1.5%]; p=not significant [NS]). Patients with CD than those with UC had higher values of maximum breath hydrogen and a greater area under the curve for breath hydrogen. Other factors associated with SIBO included female gender (11/16 [68.8%] with vs. 21/70 [30%] without SIBO; p=0.003), and having undergone surgery (8/16 [50%] vs. 6/70 [8.6%]; p=0.0002). SIBO patients had lower levels of total serum protein and albumin than those without SIBO (6.2 ± 1.5 g/dL vs. 7.0 ± 0.9 g/dL, respectively; p=0.009 and 3.5 ± 0.9 g/dL vs. 4.0 ± 0.6 g/dL, respectively; p=0.02). CD, female gender, and surgery for IBD tended to be the independent factors associated with SIBO among IBD patients on multivariate analysis. CONCLUSIONS Patients with IBD, particularly CD, female, and those having undergone surgery, have a higher risk of SIBO than the healthy controls.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India.
| | - Ankur Yadav
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Bushra Fatima
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Anand Prakash Agrahari
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Asha Misra
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| |
Collapse
|
41
|
Huang P, Wang X, Wang S, Wu Z, Zhou Z, Shao G, Ren C, Kuang M, Zhou Y, Jiang A, Tang W, Miao J, Qian X, Gong A, Xu M. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut microbiota. Curr Res Food Sci 2022; 5:1403-1411. [PMID: 36105890 PMCID: PMC9464647 DOI: 10.1016/j.crfs.2022.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) exerts physiological effects in mammals through its conversion to nicotinamide adenine dinucleotide (NAD+). In this study, we established experimental models of colitis by mixing drinking water of C57BL/6J mice with dextran sodium sulphate (DSS), and then fed them with the same concentration of NMN or at the same time. After NMN treatment, we observed improved morphology of inflamed intestines, slightly restored length of colon, improved barrier function and reduced proinflammatory factors expression in serum. Also, significant alterations in the composition and abundance of intestinal flora in IBD mice were found. The abundance of Firmicutes, Verrucomicrobia, Akkermansia and Lactobacillus, considered as beneficial bacteria, increased, while Bacteroidetes and Muribaculaceae unclassifiably decreased. Taken together, these results suggest that NMN may improve intestinal inflammation, reduce intestinal mucosal permeability and repair gut flora dysbiosis in IBD.
After NMN feeding, the improved morphology of inflamed intestines, restored length of colon and enhanced mucosal permeability were discovered. The expression of pro-inflammatory factors in serum was also decreased after NMN administration. Significant alterations in the composition and abundance of intestinal flora in IBD mice were found. This study provides some evidences for the application of NMN in the prevention and treatment of IBD, which is important for clinical application.
Collapse
Affiliation(s)
- Pan Huang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
- Affiliated Yixing People's Hospital, Jiangsu University, Wuxi 214200, PR China
| | - Siyu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhipeng Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Weihong Tang
- Affiliated People's Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianye Miao
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
- Corresponding author. School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Min Xu
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
- Corresponding author. Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212013, China.
| |
Collapse
|
42
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
43
|
Martyniak A, Medyńska-Przęczek A, Wędrychowicz A, Skoczeń S, Tomasik PJ. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021; 11:biom11121903. [PMID: 34944546 PMCID: PMC8699341 DOI: 10.3390/biom11121903] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of inflammatory bowel diseases (IBD) and the increasing severity of the course of these diseases create the need for developing new methods of therapy. The gut microbiome is extensively studied as a factor influencing the development and course of IBD. The composition of intestinal microbiota can be relatively easily modified by diet (i.e., prebiotics, mainly dietary fibers) and bacterial supplementation using beneficial bacteria strains called probiotics. Additionally, the effects of the improved microbiome could be enhanced or gained by using paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of bacterial metabolism or equal synthetic products that beneficially modulate immunological response and inflammation). This study summarizes the recent works on prebiotics, probiotics, synbiotics (products merging pre- and probiotics), paraprobiotics and postbiotics in IBD.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Aleksandra Medyńska-Przęczek
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-P.); (A.W.)
| | - Andrzej Wędrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-P.); (A.W.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|
44
|
Yang L, Luo H, Tan D, Zhang S, Zhong Z, Wang S, Vong CT, Wang Y. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153709. [PMID: 34560518 DOI: 10.1016/j.phymed.2021.153709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
45
|
Cheng XR, Guan LJ, Muskat MN, Cao CC, Guan B. Effects of Ejiao peptide-iron chelates on intestinal inflammation and gut microbiota in iron deficiency anemic mice. Food Funct 2021; 12:10887-10902. [PMID: 34643632 DOI: 10.1039/d1fo01802g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron deficiency is a global nutritional problem that adversely affects the functional regulation of the immune system. In the process of treatment through iron supplementation, the problem of excessive iron intake often occurs, which increases the level of inflammation in the body. Excessive iron can also lead to an increase in intestinal iron-requiring pathogenic bacteria and an imbalance of intestinal flora. In this study, we aim to explore the effect of Ejiao peptide-iron (EPI) chelates on the intestinal flora and inflammation of ICR mice having iron-deficiency anemia (IDA). The mice were given low, medium, and high doses of EPI and FeSO4 (1.0, 2.0 and 3.0 mg Fe per kg weight, respectively) daily for 4 weeks by intragastric administration. IDA mice showed increased inflammation levels and decreased sIgA secretion, which were restored after intervention with EPI at different doses. Intestinal mucosal ulcers, inflammatory cell infiltration, and oxidative stress in the colon tissue were reduced, and intestinal permeability was improved. Furthermore, 16S rDNA gene sequencing revealed that EPI increased microbial diversity and richness, changing the community structure, therefore, alleviating microbiota dysbiosis caused by IDA (e.g. the proportion of Firmicutes/Bacteroides). Different from the traditional iron supplement FeSO4, when the pathogenic bacteria (e.g. Helicobacter and Erysipelatoclostridium) increase and the beneficial bacteria (e.g. Bifidobacterium and Blautia) decrease at high doses, EPI shows higher safety at a high dose, thereby maintaining a healthier intestinal homeostasis.
Collapse
Affiliation(s)
- Xiang-Rong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling-Juan Guan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Mitchell N Muskat
- School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cong-Cong Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bin Guan
- Wuxi Fifth People's Hospital, Wuxi 214011, China.
| |
Collapse
|
46
|
Pang B, Jin H, Liao N, Li J, Jiang C, Shi J. Vitamin A supplementation ameliorates ulcerative colitis in gut microbiota-dependent manner. Food Res Int 2021; 148:110568. [PMID: 34507723 DOI: 10.1016/j.foodres.2021.110568] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC), is a chronic relapsing inflammatory condition of the gastrointestinal track. The purpose of this study is to explore whether Vitamin A (VA) can treat UC and its mechanisms. A mouse model of UC was established using 3.0% (w/v) dextran sodium sulfate (DSS). VA was used to treat UC by intragastric administration of 5000 international unit (IU) retinyl acetate. Fecal microbiota transplantation (FMT) was also used to treat the UC model mice to verify the effect of influenced gut microbiota. The content of short-chain fatty acids (SCFAs) in cecal contents was quantitatively detected by gas chromatography and mass spectrometry. VA supplementation significantly ameliorated UC. 16S rRNA sequencing indicated that VA-treated mice exhibited much more abundant gut microbial diversity and flora composition. Targeted metabolomics analysis manifested the increased production of SCFAs in VA-treated mice. Gut microbiota depletion and FMT results confirmed the gut microbiota-dependent mechanism as that VA relieved UC via regulating gut microbiota: increase in SCFA-producing genera and decrease in UC-related genera. The restore of intestinal barrier and the inhibition of inflammation were also found to contribute to the amelioration of UC by VA. It was concluded that a VA supplement was enough to cause a significant change in gut microbiota and amelioration of UC.
Collapse
Affiliation(s)
- Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Junjun Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
47
|
Zhang XF, Guan XX, Tang YJ, Sun JF, Wang XK, Wang WD, Fan JM. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2855-2875. [PMID: 33555375 DOI: 10.1007/s00394-021-02503-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Probiotics have been reported to be beneficial for inflammatory bowel disease (IBD), but the types, number of strains, dosage, and intervention time of probiotics used remain controversial. Furthermore, the changes of gut microbiota in IBD's patients are also intriguing. Thus, this meta-analysis was to explore the clinical effects and gut microbiota changes of using probiotics, prebiotics and synbiotics in IBD. METHODS The search was performed in PubMed, Web of Science and the Cochrane library from inception to April 2020. Qualified randomized controlled trials were included. IBD's remission rate, disease activity index and recurrence rate were extracted and analyzed. Changes in the gut microbiota of patients with IBD are comprehensively described. RESULTS Thirty-eight articles were included. Probiotics, prebiotics and synbiotics can induce/maintain IBD's remission and reduce ulcerative colitis (UC) disease activity index (RR = 1.13, 95% CI 1.02, 1.26, P < 0.05; SMD = 1.00, 95% CI 0.27, 1.73, P < 0.05). In subgroup analyses of IBD remission rate and UC disease activity index, we obtained some statistically significant results in some subgroup (P < 0.05). To some extent, probiotic supplements can increase the number of beneficial bacteria (especially Bifidobacteria) in the intestinal tract of patients with IBD. CONCLUSIONS Our results support the treatment of IBD (especially UC) with pro/pre/synbiotics, and synbiotics are more effective. Probiotic supplements that are based on Lactobacillus and Bifidobacterium or more than one strain are more likely to be beneficial for IBD remission. The dose of 1010-1012 CFU/day may be a reference range for using probiotics to relieve IBD.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jin-Feng Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Kai Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
48
|
Assimakopoulos SF, Mastronikolis S, DE Lastic AL, Aretha D, Papageorgiou D, Chalkidi T, Oikonomou I, Triantos C, Mouzaki A, Marangos M. Intestinal Barrier Biomarker ZO1 and Endotoxin Are Increased in Blood of Patients With COVID-19-associated Pneumonia. In Vivo 2021; 35:2483-2488. [PMID: 34182534 DOI: 10.21873/invivo.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM The present study was undertaken to investigate (i) whether hospitalized patients with COVID-19 pneumonia present intestinal barrier dysfunction with consequent translocation of endotoxin into the systemic circulation and (ii) whether intestinal barrier biomarkers have any prognostic role in terms of progression to severe respiratory failure. PATIENTS AND METHODS In this prospective study, 22 patients with COVID-19-associated pneumonia and 19 patients with non-COVID-19-related community-acquired pneumonia (CAP group) were studied while 12 healthy persons comprised the control group. Blood samples were collected on admission and analysed for serum levels of endotoxin and zonula occludens-1 (ZO1). Clinical courses regarding progression to severe respiratory failure (SRF) requiring mechanical ventilation were recorded. RESULTS Patients with COVID-19-associated pneumonia and patients with CAP presented significantly higher serum endotoxin and ZO1 concentrations on admission as compared to healthy controls. There was no difference in endotoxin levels between patients with COVID-19-related pneumonia and patients with CAP. In patients with COVID-19-related pneumonia, serum endotoxin concentrations were positively correlated with C-reactive protein and ferritin values. There were no significant differences in serum endotoxin and ZO1 concentrations between patients with severe and not severe COVID-19-related pneumonia, nor between patients who developed SRF and those who did not Conclusion: Patients with COVID-19-related pneumonia present intestinal barrier dysfunction leading to systemic endotoxemia. Admission values of endotoxin and ZO1 do not have any prognostic role for progression to SRF.
Collapse
Affiliation(s)
| | | | - Anne-Lise DE Lastic
- Division of Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Diamanto Aretha
- Department of Anesthesiology and Intensive Care Medicine, University of Patras Medical School, Patras, Greece
| | - Dimitris Papageorgiou
- Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Theodora Chalkidi
- Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Ioanna Oikonomou
- Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Christos Triantos
- Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Markos Marangos
- Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| |
Collapse
|
49
|
Pang B, Jin H, Liao N, Li J, Jiang C, Shao D, Shi J. Lactobacillus rhamnosus from human breast milk ameliorates ulcerative colitis in mice via gut microbiota modulation. Food Funct 2021; 12:5171-5186. [PMID: 33977948 DOI: 10.1039/d0fo03479g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gut microbiota imbalance is one of the major causes of ulcerative colitis (UC). L. rhamnosus SHA113 (LRS), a strain isolated from healthy human milk, influences the regulation of gut flora. This study aims to determine whether this strain can ameliorate UC by modulating gut microbiota. Mouse models of UC were established using C57BL/6Cnc mice with intragastric administration of 3.0% (w/v) dextran sodium sulfate (DSS). LRS was used to treat the mouse models of UC with 109 cfu mL-1 cell suspension via intragastric administration. To verify the effect of gut microbiota on UC, fecal microbiota collected from the mice after the treatment with LRS were also used to treat the UC mouse models (FMT). The severity of UC was evaluated based on body weight, colon length, disease activity index (DAI), and hematoxylin-eosin staining. The microbial composition was analyzed by 16S rRNA sequencing. The mRNA expression levels of cytokines, mucins, tight junction proteins, and antimicrobial peptides in the gastrointestinal tract were detected by quantitative real-time polymerase chain reaction. The short-chain fatty acid (SCFAs) in the cecal contents of all mice were quantitatively detected by gas chromatography and mass spectrometry. Both LRS and FMT exerted excellent therapeutic effects on UC, as evidenced by the reduction in body weight loss, colon length, and colon structural integrity, as well as the increase in the DAI (disease activity index). LRS and FMT treatments showed similar effects: (1) an increase of total SCFA production in the cecal contents and the abundance of gut microbial diversity and flora composition; (2) decreases in two genera (Parabacteroides and Escherichia/Shigella) related to the DAI and the enhancement of SCFAs and IL-10 positively related genera in the gut microbiota (Bilophila, Roseburia, Akkermansia, and Bifidobacterium); (3) downregulation of the expression of tumor necrosis factor-α, interleukin IL-6, and IL-1β, and upregulation of the expression of the anti-inflammatory cytokine IL-10; and (4) upregulation of the expression of mucins (Muc1-4) and tight junction protein ZO-1. Overall, L. rhamnosus SHA113 relieves UC via the regulation of gut microbiota: increases in SCFA-producing genera and decreases in UC-related genera. In addition, a single strain is sufficient to induce a significant change in the gut microbiota and exert therapeutic effects on UC.
Collapse
Affiliation(s)
- Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Junjun Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| |
Collapse
|
50
|
Wang J, Zheng S, Yang X, Huazeng B, Cheng Q. Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb Pathog 2021; 158:105020. [PMID: 34089791 DOI: 10.1016/j.micpath.2021.105020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Gut microbial dysbiosis is closely associated with cow's milk protein allergy (CMPA) during infancy. Recent research has highlighted the crucial role of the commensal microbiota-induced intestinal regulatory T (Treg) cell response in the development of oral tolerance and protection against IgE-mediated food allergies. However, the influences of CMPA (particularly non-IgE-mediated CMPA)-associated microbial dysbiosis on Treg cell-mediated intestinal immune tolerance and homeostasis remain poorly characterized. To investigate this issue, fecal microbiota from infant donors with food protein-induced allergic proctocolitis (FPIAP) associated with cow's milk, which is the most frequent clinical type of non-IgE-mediated gastrointestinal CMPA, and from age-matched healthy controls were transplanted into germ-free mice in this study. Two weeks post fecal microbiota transplantation, the gut microbiome of the recipient mice was analyzed by 16S rRNA gene sequencing, and the intestinal immunological alterations associated with the Treg cell compartment and intestinal immune homeostasis were detected. The specific gut microbial phylotypes that were potentially responsible for the disruption of intestinal immune homeostasis were also analyzed. We observed that the main characteristics of the gut microbiome in infant donors could be stably maintained in recipient mice. We also found that mice colonized with the gut microbiome from infants with cow's milk-induced FPIAP showed significant deficiencies in the accumulation and function of intestinal Treg cells. Furthermore, these mice showed disrupted intestinal immune homeostasis, which was characterized by an overactivated Th2 biased immune response. We further identified two potentially pathogenic genera that contribute to this disruption. Overall, our results highlight a destructive effect of non-IgE-mediated CMPA-associated microbial dysbiosis on intestinal immune tolerance and homeostasis. We believe these findings will help improve our understanding of the gut microbiota-mediated pathogenesis of non-IgE-mediated CMPA in the future.
Collapse
Affiliation(s)
- Jinzhi Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatircs, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shuang Zheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Yang
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ben Huazeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian Cheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|