1
|
You Y, Zhao X, Jie J, Xie Y, Hao Z, He Q, Zhou Y. Construction and evaluation of a Salmonella Paratyphi A vaccine candidate based on a poxA gene mutation. Gene 2025; 933:148952. [PMID: 39299530 DOI: 10.1016/j.gene.2024.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Salmonella Paratyphi A, the pathogen of paratyphoid A accounts for an obviously growing proportion of cases in many areas. Therefore, development of specific paratyphoid A vaccines is needed. In the present study, the poxA gene of Salmonella Paratyphi A, encoding the aminoacyl-tRNA synthetase, was deleted successfully by the method of lambda Red recombination system, the resulting strain, ΔpoxA was characterized in respect of growth, adhesion and invasion, virulence, immunogenicity and protective efficacy. It was found that the growth of the ΔpoxA strain was significantly delayed compared with the wild type strain, the mutant ΔpoxA was less invasive to Caco-2 BBE epithelioid cells and THP-1 macrophages than the wild type strain, strain ΔpoxA was attenuated at least 1000-fold in mice, significant immune response and efficient protection were provided by the mutant ΔpoxA after oral immunization. It is concluded that the Salmonella Paratyphi A poxA deletion mutant ΔpoxA can be used as a live oral vaccine candidate against paratyphoid A.
Collapse
Affiliation(s)
- Yonghe You
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xiaohui Zhao
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Jiayue Jie
- Department of Basic Medical Sciences, Zhengzhou Medical and Health Vocational College, Zhengzhou, China
| | - Yongsheng Xie
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zhenhua Hao
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Qunli He
- Department of Basic Medical Sciences, Zhengzhou Medical and Health Vocational College, Zhengzhou, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yanlin Zhou
- School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Yin J, Wang L, Shen R, He J, Li S, Wang H, Cheng Z. The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo. FEMS Microbiol Lett 2024; 371:fnae067. [PMID: 39165135 DOI: 10.1093/femsle/fnae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.
Collapse
Affiliation(s)
- Junlei Yin
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Lijun Wang
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Ronghua Shen
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Jinjiao He
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Shaozu Li
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Huajian Wang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Zhao Cheng
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| |
Collapse
|
3
|
Li B, Wang H, Xu J, Qu W, Yao L, Yao B, Yan C, Chen W. Filtration assisted pretreatment for rapid enrichment and accurate detection of Salmonella in vegetables. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Yin J, Cheng Z, Xu Z, Zhi L, Zhang Y, Yuan X, Pan P, Sun W, Yu T, Liu T. Contribution of prgH gene for Salmonella Pullorum to virulence and the expression of NLRP3, Caspase-1 and IL-1β in chickens. Microb Pathog 2022; 171:105744. [PMID: 36049651 DOI: 10.1016/j.micpath.2022.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Type III secretion system 1 (T3SS1) encoded by Salmonella pathogenicity island 1 (SPI1) is associated with invasion of host cells by Salmonella, PrgH encoded by prgH gene is an important component of T3SS1. This study aimed to explore the contribution of prgH gene for Salmonella Pullorum to virulence and the expression of NLRP3, Caspase-1 and IL-1β in chickens. A prgH gene deletion mutant (C79-13ΔprgH) was firstly generated, and the result of LD50 showed that deletion of prgH significantly decreased the virulence of Salmonella Pullorum in one-day-old HY-line white chickens, and the colonization also decreased in chickens after loss of prgH. Next, the expressions of NLRP3, Caspase-1, and IL-1β were detected in acute infection model of chickens by qRT-PCR and/or ELISA, respectively, and the results showed that the mutant strain C79-13ΔprgH reduced the expression levels of NLRP3, Caspase-1, and IL-1β in chickens compared to the group infected with the wild type strain C79-13. Taken together, all of these findings indicated that prgH promotes the virulence and the expression of NLRP3, Caspase-1, and IL-1β for Salmonella Pullorum in chickens.
Collapse
Affiliation(s)
- Junlei Yin
- Medical College, Xinxiang University, Xinxiang, China
| | - Zhao Cheng
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China.
| | - Zhenyu Xu
- Medical College, Xinxiang University, Xinxiang, China
| | - Lijuan Zhi
- Medical College, Xinxiang University, Xinxiang, China
| | - Yige Zhang
- Medical College, Xinxiang University, Xinxiang, China
| | - Xinzhong Yuan
- Medical College, Xinxiang University, Xinxiang, China
| | - Pengtao Pan
- Medical College, Xinxiang University, Xinxiang, China
| | - Weiwei Sun
- Medical College, Xinxiang University, Xinxiang, China
| | - Tao Yu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China
| | - Tiantian Liu
- Medical College, Xinxiang University, Xinxiang, China
| |
Collapse
|
5
|
Yin J, Xiong W, Yuan X, Li S, Zhi L, Pan P, Sun W, Yu T, He Q, Cheng Z. Salmonella Pullorum lacking srfA is attenuated, immunogenic and protective in chickens. Microb Pathog 2021; 161:105230. [PMID: 34619313 DOI: 10.1016/j.micpath.2021.105230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Sallmonella Pullorum is a host-restricted pathogen for poultry and causes severe economic importance in many developing countries. The development of novel vaccines for Salmonella Pullorum is necessary to eradicate the prevalence of the pathogen. In our study, a srfA deletion mutant (C79-13ΔsrfA) of Salmonella Pullorum was constructed, and then the biological characteristics and protective efficacy of the mutant were evaluated. The mutant C79-13ΔsrfA was much less virulent than its parental strain C79-13 in one-day-old HY-line white chickens, immunization with C79-13ΔsrfA (4 × 107 CFU) through oral pathway induced highly specific humoral and cellular immune responses, the growth performance of vaccinated chickens was consistent with that of unvaccinated chickens. The survival percentages of vaccinated chickens reached 90% and 80%, after challenge with Salmonella Pullorum strain C79-13 and Salmonella Gallinarum strain SG9 at 10 days post-immunization (dpi), respectively. Collectively, our results indicate that C79-13ΔsrfA is a live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Junlei Yin
- Medical College, Xinxiang University, Xinxiang, China
| | - Wenhui Xiong
- Medical College, Xinxiang University, Xinxiang, China
| | - Xinzhong Yuan
- Medical College, Xinxiang University, Xinxiang, China
| | - Shuli Li
- Medical College, Xinxiang University, Xinxiang, China
| | - Lijuan Zhi
- Medical College, Xinxiang University, Xinxiang, China
| | - Pengtao Pan
- Medical College, Xinxiang University, Xinxiang, China
| | - Weiwei Sun
- Medical College, Xinxiang University, Xinxiang, China
| | - Tao Yu
- School of Life Science and Technology, Xinxiang University, Xinxiang, China
| | - Qunli He
- Medical College, Zhengzhou University of Industrial Technology, Zhengzhou, China; College of Basic Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Zhao Cheng
- School of Life Science and Technology, Xinxiang University, Xinxiang, China.
| |
Collapse
|
6
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
J Barton A, Hill J, J Blohmke C, J Pollard A. Host restriction, pathogenesis and chronic carriage of typhoidal Salmonella. FEMS Microbiol Rev 2021; 45:6159486. [PMID: 33733659 PMCID: PMC8498562 DOI: 10.1093/femsre/fuab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
While conjugate vaccines against typhoid fever have recently been recommended by the World Health Organization for deployment, the lack of a vaccine against paratyphoid, multidrug resistance and chronic carriage all present challenges for the elimination of enteric fever. In the past decade, the development of in vitro and human challenge models has resulted in major advances in our understanding of enteric fever pathogenesis. In this review, we summarise these advances, outlining mechanisms of host restriction, intestinal invasion, interactions with innate immunity and chronic carriage, and discuss how this knowledge may progress future vaccines and antimicrobials.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.,Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
8
|
Pan P, Zou F, He C, He Q, Yin J. Characterization and protective efficacy of a sptP mutant of Salmonella Paratyphi A. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:774-781. [PMID: 33135379 PMCID: PMC7654428 DOI: 10.1002/iid3.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Background Salmonella Paratyphi A causes paratyphoid A, a severe systemic disease of people and remains a major public health problem in many parts of the world. In the interest of researching the roles of sptP on Salmonella Paratyphi A and developing a live‐attenuated vaccine candidate, an sptP mutant of Salmonella Paratyphi A SPA017 (SPA017ΔsptP) was constructed, and then its characterization, immunogenicity, and protective ability were evaluated. Results The deletion of sptP had no effect on growth and biochemical properties. Adhesion and invasion assays showed that the lack of sptP did not affect the adhesion of Salmonella Paratyphi A, but the invasive ability of the mutant strain was significantly decreased, the half‐lethal dose (LD50) of the mutant strain was 1.43 × 104 times of the parent strain in intraperitoneally injected mice. Single intraperitoneal vaccination with SPA017ΔsptP (1 × 105 CFU) in mice did not affect the body weight or elicit clinical symptoms relative to the control group, SPA017ΔsptP bacteria were isolated from livers and spleens of vaccinated mice at 14 days postvaccination. Notably, specific humoral and cellular immune responses were significantly induced. The protective assessment showed that the mutant strain could provide high‐level protection against subsequent challenge with the wild‐type SPA017 strain. Conclusions These results demonstrated that SptP plays an essential role in the pathogenicity of Salmonella Paratyphi A, and Salmonella Paratyphi A lacking sptP is immunogenic and protective in mice.
Collapse
Affiliation(s)
- Pengtao Pan
- Medical College, Xinxiang University, Xinxiang, China
| | - Fanyu Zou
- Medical College, Xinxiang University, Xinxiang, China
| | - Chuanshan He
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qunli He
- Medical College, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Junlei Yin
- Medical College, Xinxiang University, Xinxiang, China
| |
Collapse
|