1
|
Srivastava V, Navabharath M, Khan M, Samal M, Parveen R, Singh SV, Ahmad S. A comprehensive review on Phyto-MAP: A novel approach of drug discovery against Mycobacterium avium subspecies paratuberculosis using AYUSH heritage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118482. [PMID: 38908495 DOI: 10.1016/j.jep.2024.118482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indian system of Traditional medicine, AYUSH (Ayurveda, Yoga, Unani, Siddha, and Homeopathy) has great potential with a History of Safe Use (HOSU) of thousands of medicinal plants included in pharmacopoeias. The multi-targeted approach of phytoconstituents present in different traditionally used medicinal plants makes them suitable candidates for research against various infective pathogens. MAP which is a dairy-borne pathogen is associated with the development of Johne's disease in ruminants and Crohn's disease like autoimmune disorders in human beings. There are no reliable treatment alternatives available against MAP, leaving surgical removal of intestines as the sole option. Hence, there exists an urgent need to search for leads against such infection. AIM OF THE STUDY The present review has been conducted to find out the ethnopharmacological evidence about the potential of phytoconstituents against Mycobacterium avium subspecies paratuberculosis (MAP), along with the proposal of a potential phyto-MAP mechanism for the very first time taking anti-inflammatory, immunomodulatory, and anti-microbial traditional claims into consideration. MATERIALS AND METHODS We have analyzed and reviewed different volumes of the two main traditional scriptures of India i.e. Ayurvedic Pharmacopoeia of India (API) and Unani Pharmacopoeia of India (UPI), respectively-for identification of potential anti-MAP plants based on their claims for related disorders. These plants were further investigated systematically for their scientific publications of the last 20 years (2002-2022) available through electronic databases including Google Scholar, Pubmed, and Scopus. The studies conducted in vitro, cell lines, and in vivo levels were taken into consideration along with the associated mechanisms of phytoconstituents. RESULTS A total of 70 potential medicinal plants have been identified. Based on the ethnopharmacology, a potential phyto-paratuberculosis (Phyto-paraTB) mechanism has been proposed and out of 70, seven potential anti-MAP plants have been identified to have a great future as anti-MAP. CONCLUSION A novel and scientifically viable plan has been proposed for addressing anti-MAP plants for stimulating research against MAP and related disorders using mass-trusted AYUSH medicine, which can be used as an alternative remedy in resistance cases otherwise can be advocated as an adjuvant with modern treatments for better management of the disease.
Collapse
Affiliation(s)
- Varsha Srivastava
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Manthena Navabharath
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Rabea Parveen
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, Delhi, India.
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| |
Collapse
|
2
|
Peron G, Prasad Phuyal G, Hošek J, Adhikari R, Dall'Acqua S. Identification of hydroxyquinazoline alkaloids from Justicia adhatoda L. leaves, a traditional natural remedy with NF-κB and AP-1-mediated anti-inflammatory properties and antioxidant activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118345. [PMID: 38754645 DOI: 10.1016/j.jep.2024.118345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia adhatoda L. is used as traditional medicine in Nepal to treat cough, asthma, and inflammatory disorders, and is indicated as "Asuro". Leaves are used worldwide as herbal medicine due to cardiotonic, expectorant, anti-asthmatic, and bronchodilatory properties. The aim of this work was to study the phytochemical composition of leaves of Nepalese J. adhatoda and assess their anti-inflammatory and antioxidant properties in vitro. MATERIALS AND METHODS Secondary metabolites were extracted from dried leaves using methanol (JAME: J. adhatoda methanol extract). They were analysed by means of liquid chromatography coupled with multiple-stage mass spectrometry (LC-MSn). Anti-inflammatory potential was determined by the NF-κB and AP-1 inhibition assay, and DPPH, ABTS, and β-carotene bleaching assays were performed to assess its antioxidant properties. RESULTS JAME is a rich source of secondary metabolites, especially quinazoline alkaloids such as vasicine, vasicinone, vasicoline, and adhatodine. 7-Hydroxy derivatives of peganidine, vasicolinone, and adhatodine were also identified by means of MSn data and are here reported in J. adhatoda for the first time. JAME inhibited NF-κB and AP-1 expression in THP-1 cells to a greater extent than the positive control prednisolone. A moderate radical-quenching property was observed in DPPH and ABTS assays, but the anti-carotene bleaching activity was significantly higher than the reference BHT. CONCLUSIONS To the best of our knowledge, this is the first insight into the phytochemical composition of Asuro leaves from Nepal and their bioactivity. Our results will contribute to the valorisation of this medicinal species still widely used in the traditional and complementary medicine.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, viale Europa 11, 25123, Brescia, Italy; Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Ganga Prasad Phuyal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Jan Hošek
- Veterinary Research Institute, Hudcova 296/70, CZ-621 00, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal; Central Department of Chemistry, Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
3
|
Zhang R, Fan Z, Zhu C, Huang Y, Wu P, Zeng J. Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods 2024; 13:2465. [PMID: 39123658 PMCID: PMC11311350 DOI: 10.3390/foods13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Australian finger lime (Citrus australasica L.) has become increasingly popular due to its potent antioxidant capacity and health-promoting benefits. This study aimed to determine the chemical composition, antibacterial characteristics, and mechanism of finger lime extract. The finger lime extracts were obtained from the fruit of the Australian finger lime by the ethanol extraction method. The antibacterial activity of the extract was examined by detecting the minimum inhibitory concentration (MIC) for two Gram-positive and four Gram-negative bacterial strains in vitro, as well as by assessing variations in the number of bacteria for Candidatus Liberibacter asiaticus (CLas) in vivo. GC-MS analysis was used to identify the antibacterial compounds of the extract. The antibacterial mechanisms were investigated by assessing cell permeability and membrane integrity, and the bacterial morphology was examined using scanning electron microscopy. The extract demonstrated significant antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Gram-negative bacterial species, such as Escherichia coli, Agrobacterium tumefaciens, Xanthomonas campestris, Xanthomonas citri, and CLas. Among the six strains evaluated in vitro, B. subtilis showed the highest susceptibility to the antimicrobial effects of finger lime extract. The minimum inhibitory concentration (MIC) of the extract against the tested microorganisms varied between 500 and 1000 μg/mL. In addition, the extract was proven effective in suppressing CLas in vivo, as indicated by the lower CLas titers in the treated leaves compared to the control. A total of 360 compounds, including carbohydrates (31.159%), organic acid (30.909%), alcohols (13.380%), polyphenols (5.660%), esters (3.796%), and alkaloids (0.612%), were identified in the extract. We predicted that the primary bioactive compounds responsible for the antibacterial effects of the extract were quinic acid and other polyphenols, as well as alkaloids. The morphology of the tested microbes was altered and damaged, leading to lysis of the cell wall, cell content leakage, and cell death. Based on the results, ethanol extracts from finger lime may be a fitting substitute for synthetic bactericides in food and plant protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (Z.F.); (C.Z.); (Y.H.); (P.W.)
| |
Collapse
|
4
|
Zöngür A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol 2024; 64:719-731. [PMID: 39010984 PMCID: PMC11246347 DOI: 10.1007/s12088-024-01269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/24/2024] [Indexed: 07/17/2024] Open
Abstract
Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01269-8.
Collapse
|
5
|
Ullah A, Yang H, Takemae K, Wang F, Lee S, Kim IS. Sustainable bioactive food packaging based on electrospun zein-polycaprolactone nanofibers integrated with aster yomena extract loaded halloysite nanotubes. Int J Biol Macromol 2024; 267:131375. [PMID: 38604424 DOI: 10.1016/j.ijbiomac.2024.131375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Compostable zein-polycaprolactone (PZ) electrospun nanofiber integrated with different concentrations of Aster yomena extract loaded halloysite nanotubes (A. yomena-HNT) as bioactive nanofibrous food packaging is reported. SEM micrographs reveal heterogeneous nanofibers. A. yomena extract used in the study showed weak antioxidant activity with AAI and TEAC values of 0.229 and 0.346. In vitro, release profile over 7 days of A. yomena indicates a controlled, sustained, and prolonged release. The prepared nanofibers were effective against both gram-positive and gram-negative bacteria. The prepared composite nanofibers were rendered biocompatible and nontoxic when subjected to WST-1 and LDH assay after incubating with NIH 3T3 mouse fibroblast cell line. PZ-15 nanofiber packaging showed the best postharvest quality preservation in Black mulberry fruits after 4 days of storage at 25 °C and 85 % Rh. Moreover, the in vitro decomposition test reveals that the fabricated nanofibers decompose in the soil and do not pose as a threat to the environment.
Collapse
Affiliation(s)
- Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| | - Hyukjoo Yang
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan; Department of Clothing and Textiles, Yonsei University, Seoul 03722, Republic of Korea
| | - Kazuki Takemae
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Feifei Wang
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Seungsin Lee
- Department of Clothing and Textiles, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
6
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
7
|
Khandelwal P, Wadhwani BD, Rao RS, Mali D, Vyas P, Kumar T, Nair R. Exploring the pharmacological and chemical aspects of pyrrolo-quinazoline derivatives in Adhatoda vasica. Heliyon 2024; 10:e25727. [PMID: 38379997 PMCID: PMC10877266 DOI: 10.1016/j.heliyon.2024.e25727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Adhatoda or Justicia is one of the biggest and complex genera of the Acanthaceae family. Adhatoda vasica is commonly known as 'Adosa'. It is an ayurvedic medicine with a medicinal history of more than a thousand years in India. Traditionally, it is used to treat cough, asthma, phlegm, bleeding hemorrhoids, for both adults and youth. This plant possesses antiarthritis, antiseptic, antimicrobial, anti-tuberculosis, anti-inflammatory and abortifacient properties. Alkaloids are the major phytoconstituents present in the plant in the form of pyrrolo-quinazoline derivatives viz vasicine, vasicinone, vasicinol, adhatodine, adhatodinine, adhavasinone and anisotine etc. The asserted objectives are to conduct a systematic review on the phytochemistry, pharmacology and traditional uses of A. vasica, as well as highlighting the challenges found in the research. This will promote the utilization of A. vasica at extract level and further development of new drug leads based on the compounds isolated and used for treatment of various ailments. The present review covers the literature survey from 1888 to 2023. The relevant data has been collected from various peer-reviwed journals, and books via Sci-Finder, PubMed, Science Direct, Google Scholar, EBSCO, online electronic journals, SpringerLink and Wiley. This paper aims to present a systematic review of known traditional applications, pharmacological and chemical aspects in Adhatoda vasica.
Collapse
Affiliation(s)
- Poonam Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Barkha Darra Wadhwani
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Ravindra Singh Rao
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Deepak Mali
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Pooja Vyas
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tarun Kumar
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Rashmy Nair
- Department of Chemistry, S.S. Jain Subodh P.G. College, Jaipur, 302004, Rajasthan, India
| |
Collapse
|
8
|
Cheema HS, Maurya A, Kumar S, Pandey VK, Singh RM. Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria. Med Chem 2024; 20:557-575. [PMID: 37907487 DOI: 10.2174/0115734064263586231022135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains. OBJECTIVE The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance. RESULTS Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc. Conclusion: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.
Collapse
Affiliation(s)
| | - Anupam Maurya
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Sandeep Kumar
- Department of Botany, Meerut College, Meerut, 250003 (U.P.), India
| | - Vineet Kumar Pandey
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Raman Mohan Singh
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| |
Collapse
|
9
|
Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T. Potentials of Aloe barbadensis inclusion in fish feeds on resilience to Aeromonas hydrophila infection in freshwater fish Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1435-1459. [PMID: 37996691 DOI: 10.1007/s10695-023-01266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
10
|
Fatima M, Zafar I, Ain QU, Anwar MM, Yousaf W, Rather MA, Nainu F, Sharma R. Multifunctional analysis and antimicrobial activity of Adhatoda vasica: a traditional medicinal plant. Drug Metab Pers Ther 2023; 38:359-366. [PMID: 37381682 DOI: 10.1515/dmpt-2023-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Antibiotic resistance is rising, prompting innovative strategies for eradicating the epidemic. This study investigated the antibacterial properties of the leaves of a widely used medicinal plant, Adhatoda vasica. METHODS The plant's polar (water, methanol) and non-polar (hexane) extracts were tested against several different bacterial strains using the disc diffusion technique. RESULTS In a study, it was found that the water extract had the greatest inhibitory effect on Staphylococcus simulans and Staphylococcus aureus, with minimum inhibitory concentrations of 16.444 and 19.315 g/mL, respectively. Gram-negative strains were more susceptible to plant extracts than Gram-positive strains. The phytochemical analysis indicated the presence of secondary metabolites such as alkaloids, saponins, flavonoids, tannins, and steroids, where absorbance was recorded at 415 nm. The water extract had the highest amount of phenolics, with a total phenolic content of 53.92 0.47 mg and a total flavonoid content of 7.25 0.08 mg. Results suggest that the extract may have potential therapeutic applications for antimicrobial properties. CONCLUSIONS The study concluded that the extract's phenolic group of secondary metabolites were responsible for its antibacterial activity. The study highlights A. vasica as a promising source for discovering new and effective antibacterial compounds.
Collapse
Affiliation(s)
- Maryam Fatima
- Department of Biotechnology, Virtual University, Lahore, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, Punjab, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Masood Anwar
- Department of Animal Nutrition, University of Veterinary and Animal Science's Lahore, Lahore, Pakistan
| | - Waqas Yousaf
- Department of Botany, Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Punjab, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil-Gandarbal (SKAUST-K), Srinagar, Jammu and Kashmir, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Mariri NG, Dikhoba PM, Mongalo NI, Makhafola TJ. GC-ToF-MS Profiling and In Vitro Inhibitory Effects of Selected South African Plants against Important Mycotoxigenic Phytopathogens. Life (Basel) 2023; 13:1660. [PMID: 37629517 PMCID: PMC10455341 DOI: 10.3390/life13081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The harmful effects following the ingestion of mycotoxin-contaminated food include the induction of cancers, mutagenicity, immune suppression, and toxicities that target organs of the digestive, cardiovascular, and central nervous systems. Synthetic fungicides are generally associated with a high toxic residue in food and the development of excessive fungal resistance. This study aimed to determine the antifungal activities against mycotoxigenic fungi of selected South African plant leaves and potentially develop plant-derived bio-fungicides, and, furthermore, to explore the in vitro antioxidant activity and the phytochemical spectra of the compounds of the selected medicinal plant extracts. The extracts were tested for antifungal activity against phytopathogenic strains using a microdilution broth assay. Bauhinia galpinii extracts exhibited the lowest minimum inhibitory concentration (MIC) against C. cladospoides and P. haloterans at 24 h incubation periods. C. caffrum had good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with 50% inhibitory concentration (IC50) values of 0.013 mg/mL while B. galpini had IC50 values of 0.053 against free radicals of 2,2'-azinobis (3-ethylbenzthiazoline-6-suphonic acid (ABTS). The antimycotoxigenic and antioxidant activity exerted by both B. galpinii and C. caffrum may well be attributed to high TPC. In the GC-ToF-MS analysis, all the selected medicinal plants exhibited the presence of Hexadecanoic acid at varying % areas, while both B. galpinii and C. caffum exhibited the presence of lupeol at % area 2.99 and 3.96, respectively. The compounds identified, particularly the ones with higher % area, may well explain the biological activity observed. Although the selected medicinal plants exhibited a notable biological activity, there is a need to explore the safety profiles of these plants, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ntagi Gerald Mariri
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Preachers Madimetja Dikhoba
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Science (CAES), Laboratories, University of South Africa, Private BagX06, Florida 0710, South Africa
| | - Tshepiso Jan Makhafola
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| |
Collapse
|
12
|
Kamaraj C, Karthi S, Reegan AD, Balasubramani G, Ramkumar G, Kalaivani K, Zahir AA, Deepak P, Senthil-Nathan S, Rahman MM, Md Towfiqul Islam AR, Malafaia G. Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. ENVIRONMENTAL RESEARCH 2022; 213:113711. [PMID: 35728640 DOI: 10.1016/j.envres.2022.113711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Appadurai Daniel Reegan
- National Center for Disease Control, Bengaluru Branch, No:08, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India.
| | - Govindasamy Balasubramani
- Division of Research & Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India.
| | - A Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam, 632 509, Vellore District, Tamil Nadu, India.
| | - Paramasivam Deepak
- Department of Biotechnology, Dr. N.G.P. Arts and Science College, Dr.N.G.P. - Kalapatti Road, Coimbatore, 641048, Tamil Nadu, India.
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | | | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Dietary effect of grape seed proanthocyanidin extract on growth performance, serum biochemical parameters, skin mucosal immune response, and antioxidant capacity in goldfish ( Carassius auratus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A trial was conducted to evaluate the effect of dietary grape seed proanthocyanidin extract (GSPE) on gold fish, Carassius auratus. In this regard, GSPE was added to a basal diet at four levels including 0, 200, 400, and 600 mg/kg to produce four experimental diets including control, GSPE200, GSPE400, and GSPE600. Three hundred and sixty goldfish (3.75 ± 0.1 g) were stocked in twelve 100 L rectangular tanks (30 fish per tank) and fed with the experimental diets three times a day for nine weeks. During the experimental trial, water temperature was 26.7–28.5ºC. The weight gain and specific growth rate in the fish fed with GSPE supplemented diets were higher than the control, meanwhile feed conversion ratio value in these groups decreased compared to the control. Fish fed GSPE-supplemented diets had lower fillet lipid (10-19%), but higher protein levels (7–15%) compared to the control. The levels of serum triglyceride, alanine aminotransferase and aspartate aminotransferase in the fish fed GSPE-supplemented diets were decreased compared to the control group. The highest and lowest levels of serum glucose, and ALP were in the fish fed with control and GSPE600 diets, respectively. The skin mucusal lysozyme activity (24–38%) and protein level (70–96%) were higher in fish fed GSPE-supplemented diets than the control. The highest, and lowest liver antioxidant enzymes including superoxide dismutase, catalase, and gluthatione peroxidase were observed in in GSPE 600, and control groups, respectively. The findings of the present study indicated that supplementing 400 mg/kg GSPE in diet can improve growth and health condition in goldfish.
Collapse
|
14
|
Čagalj M, Radman S, Šimat V, Jerković I. Detailed Chemical Prospecting of Volatile Organic Compounds Variations from Adriatic Macroalga Halopteris scoparia. Molecules 2022; 27:4997. [PMID: 35956941 PMCID: PMC9370346 DOI: 10.3390/molecules27154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to isolate volatile organic compounds (VOCs) from fresh (FrHSc) and air-dried (DrHSc) Halopteris scoparia (from the Adriatic Sea) by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and to analyse them by gas chromatography and mass spectrometry (GC-MS). The impact of the season of growth (May-September) and air-drying on VOC composition was studied for the first time, and the obtained data were elaborated by principal component analysis (PCA). The most abundant headspace compounds were benzaldehyde, pentadecane (a chemical marker of brown macroalgae), and pentadec-1-ene. Benzaldehyde abundance decreased after air-drying while an increment of benzyl alcohol after drying was noticed. The percentage of pentadecane and heptadecane increased after drying, while pentadec-1-ene abundance decreased. Octan-1-ol decreased from May to September. In HD-FrHSc, terpenes were the most abundant in June, July, and August, while, in May and September, unsaturated aliphatic compounds were dominant. In HD-DrHSc terpenes, unsaturated and saturated aliphatic compounds dominated. (E)-Phytol was the most abundant compound in HD-FrHSc through all months except September. Its abundance increased from May to August. Two more diterpene alcohols (isopachydictyol A and cembra-4,7,11,15-tetraen-3-ol) and sesquiterpene alcohol gleenol were also detected in high abundance. Among aliphatic compounds, the dominant was pentadec-1-ene with its peak in September, while pentadecane was present with lower abundance. PCA (based on the dominant compound analyses) showed distinct separation of the fresh and dried samples. No correlation was found between compound abundance and temperature change. The results indicate great seasonal variability of isolated VOCs, as well among fresh and dried samples, which is important for further chemical biodiversity studies.
Collapse
Affiliation(s)
- Martina Čagalj
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
15
|
In Vivo Antiplasmodial Potential of the Leaf, Mesocarp, and Epicarp of the Raphia hookeri Plant in Mice Infected with Plasmodium berghei NK65. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4129045. [PMID: 35873624 PMCID: PMC9300302 DOI: 10.1155/2022/4129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Results The presence of alkaloids, fats and oils, phenolic, and flavonoids was detected via the qualitative test which was confirmed from the result obtained from the GC-MS chromatogram of ethanolic leaves extract. The GC-MS chromatogram of the constituents analogous to the twenty peaks was analyzed as follows: dodecanoic acid (1.94%), 2-undecanone (3.42%), hexadecanoic acid (44.84%), oleic acid (7.45%), octadecanoic acid (8.41%), narcissidine (2.38%), 1-dotriacontanol (2.38%), α-sitosterol (2.02%), and lupeol (1.42%). The total phenolics and flavonoids of 118 and 23.3702 mg/g were analyzed in the leaves extract. The leave extract exhibited inhibitory activity of 73.49% against free radicals which could lead to inflammation. The extracts and chloroquine-treated groups showed significant decrease in percentage parasitaemia with pronounced activity observed in chloroquine groups. Conclusion The curative and scavenging potencies of studied plant could be attributed to the metabolites analyzed and could guide the formulation of new pharmacophores against malaria infections and inflammations.
Collapse
|
16
|
Cai J, Wang S, Gao Y, Wang Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods 2022; 11:foods11111585. [PMID: 35681334 PMCID: PMC9180537 DOI: 10.3390/foods11111585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale L. essential oil (POEO) against Pcc in order to search a new way to control Pcc. The optimum extraction conditions of POEO (soaking time 2.6 h, extraction time 7.7 h and ratio of liquid to solid 10.3 mL/g) were optimized by response surface methodology. The minimum inhibitory concentration (MIC) of POEO against Pcc was 0.625 mg/mL. The control efficiency of protective activity of POEO against Pcc was 74.67~92.67%, and its curative activity was 76.00~93.00%. Then, 29 compounds were obtained by GC-MS; the prime compounds of POEO were phytol, phytone, n-pentacosane, 1-octen-3-ol and β-ionone. It was verified that, compared with control samples, POEO destroyed cell morphology. It increased surface potential, increased hydrophobicity, damaged cell walls, destroyed the integrity and permeability of cell membrane, reduced membrane potential (MP), and changed membrane protein conformation. It inhibited the activities of pyruvate kinase (PK), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase). Briefly, the results of this study demonstrate that POEO showed effective inhibitory activity against Pcc, thus POEO could have potential application in controlling Pcc.
Collapse
Affiliation(s)
- Jin Cai
- Institute of Applied Chemistry, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
- Correspondence:
| | - Shiqin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Yichen Gao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| | - Qi Wang
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| |
Collapse
|
17
|
Antimicrobial, Antigenotoxicity, and Characterization of Calotropis procera and Its Rhizosphere-Inhabiting Actinobacteria: In Vitro and In Vivo Studies. Molecules 2022; 27:molecules27103123. [PMID: 35630600 PMCID: PMC9146570 DOI: 10.3390/molecules27103123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch–casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC–MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract’s antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60–1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.
Collapse
|
18
|
Susilo B, Rohim A, Wahyu ML. Serial Extraction Technique of Rich Antibacterial Compounds in Sargassum cristaefolium Using Different Solvents and Testing their Activity. CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407217666210910095732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 09/02/2023]
Abstract
Background:
Sargassum cristaefolium, as one of the brown seaweeds locally found in
Indonesia, is extracted using the serial technique employing different solvents.
Methods:
S. cristaefolium powder (50 mesh) was extracted with three different solvents, including
hexane, ethyl acetate, and methanol. S. cristaefolium powder residue was dried prior to serial re-extraction
using different solvents. Three serial extracts were obtained and named as 1-stage extract,
2-stage extract, and 3-stage extract. Besides, a single-step extract (i.e., extraction using only
methanol) was produced to be compared with three serial extracts in antibacterial activity tests (against
E. coli and S. aureus). The three serial extracts were detected for their antibacterial compounds
using GC-MS, LC-HRMS, and FT-IR.
Results:
The 3-stage extract exhibited the highest extraction yield. On S. aureus, the inhibition
zone in all extracts was not significantly different. On E.coli, the highest inhibition zone
(5.42±0.14 mm) was of the 3-stage extract; indeed, it was higher than both antibiotic and a single-
step extract. Antibacterial compounds, such as phenol, 9-Tricosene(Z)-, palmitic acid, and
oleamide, were present in all extracts. Other antibacterial compound types, both the 1-stage and 2-stage
extracts, contained 7 types, whilst the 3-stage extract contained the most types (11 types). Particularly,
hexyl cinnamic aldehyde, betaine and several cinnamic aldehyde groups were detected only
in the 3-stage extract comprising the dominant area. The carboxylic acid groups were detected in
all extracts to confirm the fatty acid structure.
Conclusions:
The serial extraction technique could produce the 3-stage extract which exhibited the
strongest antibacterial activity and contained the richest antibacterial compounds.
Collapse
Affiliation(s)
- Bambang Susilo
- Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang-East Java,
Indonesia
| | - Abd. Rohim
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas
Brawijaya, Malang-East Java, Indonesia | Department of Agricultural Product Technology, Institut Teknologi dan
Sains Nahdlatul Ulama Pasuruan, Pasuruan-East Java, Indonesia
| | - Midia Lestari Wahyu
- Central Laboratory of Life Science, Universitas
Brawijaya, Malang-East Java, Indonesia
| |
Collapse
|
19
|
Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study. Microb Pathog 2021; 161:105221. [PMID: 34627940 DOI: 10.1016/j.micpath.2021.105221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Phytocompounds have long been well recognized in medicine and pharmacy. The natural compounds are frequently utilized as the fundamental resource in the development of novel therapeutic agents to treat bacterial infections. The rapid emergence of bacterial infections, particularly caused by Vibrio species, is seen as a serious concern for the development of aquaculture industries, resulting in substantial economic losses throughout the world. Notably, the presence of Vibrio campbellii in aquatic environments will be extremely problematic, leading to significant mortality in aquatic organisms. As a result, novel therapeutic agents are desperately needed to treat such diseases. This is the first research to demonstrate that plant-derived active compounds, tocopherol and phytol, are effective against V. campbellii infection in tomato clownfish. The findings showed that tocopherol and phytol significantly decreased the production of biofilm and virulence factors such as hemolysin, protease, lipase, hydrophobic index, and swimming motility in V. campbellii, without influencing the bacterial growth. In vivo experiments with tomato clownfish also proved that these phytocompound treatments significantly increased the survival rates of infected fishes by hindering the intestinal colonization of V. campbellii in tomato clownfish. Further, the disease protection efficacy against the pathognomonic sign of V. campbellii-infection was verified by histopathological investigation of the gills, gut, and kidney. Altogether, the results suggest that tocopherol and phytol could be promising therapeutic agents for the treatment of V. campbellii infections in aquaculture.
Collapse
|
20
|
Anjur N, Sabran SF, Daud HM, Othman NZ. An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Vet World 2021; 14:1143-1152. [PMID: 34220115 PMCID: PMC8243671 DOI: 10.14202/vetworld.2021.1143-1152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Malaysia is the world’s major producer and exporter of ornamental fish, contributing 9% to the global trade and taking the second position after Singapore. Because of their artistic appeal and tremendous commercial value for international trade, ornamental fish recently gain rapid importance for foreign exchange and as a source of employment. While ornamental fish production is growing, there is an increase in infectious diseases, resulting in high fish mortality with significant economic loss. Bacterial disease is a serious problem for ornamental fish industry. Bacterial species surveillance in diseased freshwater ornamental fish from an aquarium shop reveals that Aeromonas hydrophila is the most dominant bacteria isolated. Consequently, Malaysia is stepping up its efforts by implementing the Economic Transformation Program and other biosecurity steps to address the aquaculture issues and encourage the regrowth of the ornamental fish market. Chemotherapeutic medications, phytobiotics, probiotics, yeast extracts, vaccines, and disinfectants can be used in controlling bacteria. Further studies should be done to find new antibacterial agents from natural sources to combat bacterial fish diseases and reduce fish mortality rate in sustainable aquaculture farms. This review summarizes the literature on ornamental fish industries and aquaculture production in relation to A. hydrophila-associated diseases and ornamental fish health management in Malaysia.
Collapse
Affiliation(s)
- Norashikin Anjur
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh, Johor, Malaysia.,Department of Agrotechnology and Bio-industry, Politeknik Sandakan, Sandakan, Sabah, Malaysia
| | - Siti Fatimah Sabran
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh, Johor, Malaysia.,Centre of Research for Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Pagoh, Johor, Malaysia
| | - Hassan Mohd Daud
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Zalina Othman
- Innovation Centre in Agritechnology for Advanced BioProcess, Universiti Teknologi Malaysia, Pagoh, Johor, Malaysia
| |
Collapse
|
21
|
Pandey A, Jaiswal D, Agrawal SB. Ultraviolet-B mediated biochemical and metabolic responses of a medicinal plant Adhatoda vasica Nees. at different growth stages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 216:112142. [PMID: 33592357 DOI: 10.1016/j.jphotobiol.2021.112142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 01/24/2023]
Abstract
In the present study, the effects of elevated UV-B (eUVB; ambient ± 7.2 kJ m-2 day-1) were evaluated on the biochemical and metabolic profile of Adhatoda vasica Nees. (an indigenous medicinal plant) at different growth stages. The results showed reduction in superoxide radical production rate, whereas increase in the content of hydrogen peroxide which was also substantiated by the histochemical localization. Malondialdehyde content, which is a measure of oxidative stress, did not show significant changes at any of the growth stages however photosynthetic rate and chlorophyll content showed reduction at all growth stages under eUV-B exposure. Increased activities of the enzymatic and non-enzymatic antioxidants were noticed except ascorbic acid, which was reduced under eUV-B exposure. The metabolic profile of A. vasica revealed 43 major compounds (assigned under different classes) at different growth stages. Triterpenes, phytosterols, unsaturated fatty acids, diterpenes, tocopherols, and alkaloids showed increment, whereas reduction in saturated fatty acids and sesquiterpenes were observed under eUV-B treatment. Vasicinone and vasicoline, the two important alkaloids of A. vasica, showed significant induction under eUV-B exposure as compared to control. Treatment of eUV-B leads to the synthesis of some new compounds, such as oridonin oxide (diterpene) and α-Bisabolol oxide-B (sesquiterpene), which possess potent anti-inflammatory and anticancerous activities. The study displayed that differential crosstalk between antioxidants and secondary metabolites at different growth stages, were responsible for providing protection to A. vasica against eUV-B induced oxidative stress and enhancing its medicinal properties.
Collapse
Affiliation(s)
- Avantika Pandey
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepanshi Jaiswal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|