1
|
Sangal V, Marrs ECL, Nelson A, Perry JD. Phylogenomic analyses of multidrug resistant Corynebacterium striatum strains isolated from patients in a tertiary care hospital in the UK. Eur J Clin Microbiol Infect Dis 2024; 43:1495-1501. [PMID: 38801486 PMCID: PMC11271431 DOI: 10.1007/s10096-024-04857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Corynebacterium striatum is an emerging nosocomial pathogen. This is the first report showing the presence of three distinct multidrug resistant lineages of C. striatum among patients in a UK hospital. The presence of ErmX, Tet(W), Bla and AmpC proteins, and mutations in gyrA gene are associated with the resistance to clindamycin, doxycycline, penicillin and moxifloxacin, respectively. These strains are equipped with several corynebacterial virulence genes including two SpaDEF-type and a novel pilus gene cluster, which needs further molecular characterisation. This study highlights a need of developing an active surveillance strategy for routine monitoring and preventing potential cross-transmission among susceptible patients.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| | - Emma C L Marrs
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - John D Perry
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Cui Y, Tang Y, Shao M, Zang X, Jiang Y, Cui Z, Dang G, Liu S. Mycobacterium tuberculosis protease Rv3090 is associated with late cell apoptosis and participates in organ injuries and mycobacterial dissemination in mice. Microb Pathog 2022; 173:105880. [PMID: 36402348 DOI: 10.1016/j.micpath.2022.105880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). Mtb can overcome macrophage intracellular killing and lead to persistent infections. The proteases of Mtb are critical virulence factors that participate in immune responses. We determined that Rv3090 is a cell wall-associated protease and a potential pathogenic factor. To characterize the role of Rv3090 in Mtb, recombinant Msg_Rv3090 and Msg_pAIN strains were constructed to infect macrophages and mice. Lactate dehydrogenase assays and flow cytometry results showed that Rv3090 induces late macrophage apoptosis. In vivo infection experiments indicated that Rv3090 could induce hepatocyte and lung cell apoptosis and cause pathological damage to the spleen, livers and lungs. Msg_Rv3090 specifically stimulated the secretion of inflammatory cytokines including TNF-α, IL-6 and IL-1β. Overexpression of Rv3090 significantly promoted the survival of Msg in livers and lungs. Thus, Rv3090 protease triggered late cell apoptosis and contributed to the pathogenicity and dissemination of Mtb.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Yangyang Tang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Mingzhu Shao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Yanyan Jiang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China.
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin, 150069, PR China.
| |
Collapse
|
3
|
Zang X, Dang G, Cai Z, Shao M, Tang Y, Cao J, Cui Z, Liu S. Extracellular DNase MAP3916c attacks the neutrophil extracellular traps and is needed for Mycobacterium avium subsp. paratuberculosis virulence. Vet Microbiol 2022; 273:109529. [PMID: 35944391 DOI: 10.1016/j.vetmic.2022.109529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Extracellular DNases/nucleases are important virulence factors in many bacteria. However, no DNase/nucleases have been reported in Mycobacterium avium subsp. paratuberculosis (MAP), which is a pathogen of paratuberculosis. Genome analyses of MAP K-10 revealed that the map3916c gene putatively encodes a nuclease. In this study, we show that MAP3916c is an extracellular nonspecific DNase requiring a divalent cation, especially Mg2+. The optimum DNase activity of MAP3916c was exhibited at 41 °C and pH 9.0. Site-directed mutagenesis studies indicated that 125-Histidine is necessary for MAP3916c DNase activity. In addition, MAP3916c DNase could destroy the neutrophil extracellular traps (NETs) induced by Phorbol 12-myristate 13-acetate in vitro and degrade the NETs induced by MAP K-10 upon infection. Furthermore, MAP3916c DNase promoted the colonization of MAP K-10, induced the formation of granulomas in the liver and small intestine and promoted the release of IL-1β, IL-6 and TNF-α inflammatory cytokines during the infection of mice. These results indicated that MAP3916c is relevant to NETs escape and the pathogenicity of MAP. It also provides a basis for further study of the function of nuclease activity on the MAP immune evasion.
Collapse
Affiliation(s)
- Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Mingzhu Shao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Yangyang Tang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Cao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China.
| |
Collapse
|
4
|
Park HE, Park JS, Park HT, Choi JG, Shin JI, Jung M, Kang HL, Baik SC, Lee WK, Kim D, Yoo HS, Shin MK. Alpha-2-Macroglobulin as a New Promising Biomarker Improving the Diagnostic Sensitivity of Bovine Paratuberculosis. Front Vet Sci 2021; 8:637716. [PMID: 33748212 PMCID: PMC7973028 DOI: 10.3389/fvets.2021.637716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Johne's disease (JD) is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), which induces persistent diarrhea and cachexia. JD causes huge economic losses to the dairy industry due to reduced milk production and premature culling. Infected animals excrete MAP via feces during the prolonged subclinical stage without exhibiting any clinical signs. Therefore, accurate detection of subclinical stage animals is crucial for successful eradication of JD in the herd. In the current study, we analyzed serum samples of MAP-infected and non-infected cattle to identify potential biomarker candidates. First, we identified 12 differentially expressed serum proteins in subclinical and clinical shedder groups compared to the healthy control group. Second, we conducted ELISA for three selected biomarkers (alpha-2-macroglobulin (A2M), alpha-1-beta glycoprotein, and transthyretin) and compared their diagnostic performance with that of two commercial ELISA diagnostic kits. Serum A2M levels were significantly higher in the MAP-exposed, subclinical shedder, subclinical non-shedder, and clinical shedder groups than in the healthy control group, suggesting its possible use as a diagnostic biomarker for MAP infection. Furthermore, A2M demonstrated a sensitivity of 90.4%, and a specificity of 100% while the two commercial ELISA kits demonstrated a sensitivity of 67.83 and 73.04% and a specificity of 100%, respectively. In conclusion, our results suggest that measuring A2M by ELISA can be used as a diagnostic tool to detect MAP infection, considerably improving the detection rate of subclinical shedders and MAP-exposed animals that are undetectable using current diagnostic tools.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Jin-Sik Park
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Jeong-Ih Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Myunghwan Jung
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seung-Chul Baik
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Woo-Kon Lee
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Donghyuk Kim
- Schools of Energy & Chemical Engineering and Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
5
|
Viana MVC, Profeta R, da Silva AL, Hurtado R, Cerqueira JC, Ribeiro BFS, Almeida MO, Morais-Rodrigues F, Soares SDC, Oliveira M, Tavares L, Figueiredo H, Wattam AR, Barh D, Ghosh P, Silva A, Azevedo V. Taxonomic classification of strain PO100/5 shows a broader geographic distribution and genetic markers of the recently described Corynebacterium silvaticum. PLoS One 2020; 15:e0244210. [PMID: 33347470 PMCID: PMC7751848 DOI: 10.1371/journal.pone.0244210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
The bacterial strain PO100/5 was isolated from a skin abscess taken from a pig (Sus scrofa domesticus) in the Alentejo region of southern Portugal. It was identified as Corynebacterium pseudotuberculosis using biochemical tests, multiplex PCR and Pulsed Field Gel Electrophoresis. After genome sequencing and rpoB phylogeny, the strain was classified as C. ulcerans. To better understand the taxonomy of this strain and improve identification methods, we compared strain PO100/5 to other publicly available genomes from C. diphtheriae group. Taxonomic analysis reclassified it and three others strains as the recently described C. silvaticum, which have been isolated from wild boar and roe deer in Germany and Austria. The results showed that PO100/5 is the first sequenced genome of a C. silvaticum strain from livestock and a different geographical region, has the unique sequence type ST709, and could be could produce the diphtheriae toxin, along with strain 05–13. Genomic analysis of PO100/5 showed four prophages, and eight conserved genomic islands in comparison to C. ulcerans. Pangenome analysis of 38 C. silvaticum and 76 C. ulcerans genomes suggested that C. silvaticum is a genetically homogeneous species, with 73.6% of its genes conserved and a pangenome near to be closed (α > 0.952). There are 172 genes that are unique to C. silvaticum in comparison to C. ulcerans. Most of these conserved genes are related to nutrient uptake and metabolism, prophages or immunity against them, and could be genetic markers for species identification. Strains PO100/5 (livestock) and KL0182T (wild boar) were predicted to be potential human pathogens. This information may be useful for identification and surveillance of this pathogen.
Collapse
Affiliation(s)
- Marcus Vinicius Canário Viana
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Lima da Silva
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Hurtado
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janaína Canário Cerqueira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Ferreira Sampaio Ribeiro
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelle Oliveira Almeida
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francielly Morais-Rodrigues
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Luís Tavares
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Henrique Figueiredo
- National Reference Laboratory of Aquatic Animal Disease, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, Virginia, United States of America
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Artur Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|