1
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
2
|
Zhou Y, Chen X, Wang T, Huang R. Exploring the effects of short-course antibiotics on children's gut microbiota by using 16S rRNA gene sequencing: a case-control study. BMC Pediatr 2024; 24:562. [PMID: 39232719 PMCID: PMC11373496 DOI: 10.1186/s12887-024-05042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND With the widespread use of antibiotics, more attention has been paid to their side effects. We paid extra attention to the impact of antibiotics on children's bodies. Therefore, we analyzed the characteristic changes in the gut microbiota of children after antibiotic treatment to explore the pathogenesis of antibiotic-associated diseases in more depth and to provide a basis for diagnosis and treatment. METHODS We recruited 28 children with bronchopneumonia in the western district of Zhuhai, China, and divided them into three treatment groups based on antibiotic type. We took stool samples from children before and 3-5 days after antibiotic treatment. 16S rRNA gene sequencing was used to analyze the effects of antibiotic therapy on the gut microbiota of children. Continuous nonparametric data are represented as median values and analyzed using the Wilcoxon rank-sum test. RESULTS While alpha diversity analysis found no significant changes in the mean abundance of the gut microbiota of children after a short course of antibiotic treatment, beta diversity analysis demonstrated significant changes in the composition and diversity of the gut microbiota of children even after a short course of antibiotic therapy. We also found that meloxicillin sulbactam can inhibit the growth of Proteobacteria, Bacteroidetes, and Verrucomicrobia, ceftriaxone inhibits Verrucomicrobia and Bacteroides, and azithromycin inhibits Fusobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. We further performed a comparative analysis at the genus level and found significantly different clusters in each group. Finally, we found that azithromycin had the greatest effect on the metabolic function of intestinal microbiota, followed by ceftriaxone, and no significant change in the metabolic process of intestinal microbiota after meloxicillin sulbactam treatment. CONCLUSIONS Antibiotic treatment significantly affects the diversity of intestinal microbiota in children, even after a short course of antibiotic treatment. Different classes of antibiotics affect diverse microbiota primarily, leading to varying alterations in metabolic function. Meanwhile, we identified a series of intestinal microbiota that differed significantly after antibiotic treatment. These groups of microbiota could be used as biomarkers to provide an additional basis for diagnosing and treating antibiotic-associated diseases.
Collapse
Affiliation(s)
- Yuhan Zhou
- Department of Pediatrics, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China.
| | - Xianglian Chen
- Department of Pediatrics, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China
| | - Tongtong Wang
- Department of Pediatrics, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China
| | - Riyan Huang
- Department of Pediatrics, The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, 519100, China
| |
Collapse
|
3
|
Liu F, Qiu B, Xi Y, Luo Y, Luo Q, Wu Y, Chen N, Zhou R, Guo J, Wu Q, Xiong M, Liu H. Efficacy of thymosin α1 in management of radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy: A Phase 2 Clinical Trial (GASTO-1043). Int J Radiat Oncol Biol Phys 2022; 114:433-443. [PMID: 35870709 DOI: 10.1016/j.ijrobp.2022.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE To evaluate the efficacy of thymosin α1 in management of radiation pneumonitis (RP) in patients with locally advanced non-small cell lung cancer (LANSCLC) treated with concurrent chemoradiotherapy (CCRT). METHODS AND MATERIALS This phase II, single-arm trial enrolled patients with unresectable LANSCLC of 18 to 75 years' old and an Eastern Cooperative Oncology Group performance status of 0 to 1. Eligible patients received definitive CCRT and weekly thymosin α1 from the start of CCRT till 2 months after CCRT. Patients were administered 51 Gy in 17 daily fractions or 40 Gy in 10 daily fractions in the first course followed by a re-evaluation and those patients without disease progression had an adaptive plan of 15 Gy in 5 daily fractions or 24 Gy in 6 daily fractions as a boost. Concurrent chemotherapy consisted of weekly docetaxel (25 mg/m2) and nedaplatin (25 mg/m2) during radiation therapy. The primary endpoint was the incidence of Grade (G) ≥2 RP. Secondary endpoints included the incidence of late pulmonary fibrosis, total lymphocyte count (TLC), serum C-reactive protein (CRP) levels, and the composition of gut microbiota. TLC and CRP data were collected at baseline, 2-3 weeks during CCRT, the end of CCRT, 2 and 6 months after CCRT. Fecal samples were collected at baseline and the end of CCRT. Patients treated with CCRT but without thymosin α1 intervention during the same period were selected as the control group by the propensity score matching method. RESULTS Sixty-nine patients were enrolled in the study, and another 69 patients were selected as the control group. The incidence of G≥2 RP was lower in the study group compared with control cases (36.2% vs 53.6%, P=0.040). G1 late pulmonary fibrosis occurred in 2 (3.7%) patients of the control group compared with no event in the study group (P=0.243). Compared with the control group, the incidence of G3-4 lymphopenia (19.1% vs. 62.1%, P<0.001) was lower, and the median TLC nadir (0.51 k/µL vs. 0.30 k/µL, P<0.001) was higher in the study group. The proportion of patients with maximum CRP≥100 mg/L was lower in the study group (13.8% vs. 29.7% P=0.029). The diversity and community composition of the gut microbiota were not significantly different between the two groups. CONCLUSIONS Administration of thymosin α1 during and after CCRT was associated with significant reductions in G≥2 RP and G3-4 lymphopenia in patients with LANSCLC compared to historic controls.
Collapse
Affiliation(s)
- Fangjie Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of biology and biological engineering, South China University of Technology, Guangzhou. China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Qiaoting Luo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Yingjia Wu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Naibin Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Rui Zhou
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Jinyu Guo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mai Xiong
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Hui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Moroishi Y, Gui J, Hoen AG, Morrison HG, Baker ER, Nadeau KC, Li H, Li Z, Madan JC, Karagas MR. The relationship between the gut microbiome and the risk of respiratory infections among newborns. COMMUNICATIONS MEDICINE 2022; 2:87. [PMID: 35847562 PMCID: PMC9283516 DOI: 10.1038/s43856-022-00152-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence points to a critical role of the developing gut microbiome in immune maturation and infant health; however, prospective studies are lacking. Methods We examined the occurrence of infections and associated symptoms during the first year of life in relation to the infant gut microbiome at six weeks of age using bacterial 16S rRNA V4-V5 gene sequencing (N = 465) and shotgun metagenomics (N = 185). We used generalized estimating equations to assess the associations between longitudinal outcomes and 16S alpha diversity and metagenomics species. Results Here we show higher infant gut microbiota alpha diversity was associated with an increased risk of infections or respiratory symptoms treated with a prescription medicine, and specifically upper respiratory tract infections. Among vaginally delivered infants, a higher alpha diversity was associated with an increased risk of all-cause wheezing treated with a prescription medicine and diarrhea involving a visit to a health care provider. Positive associations were specifically observed with Veillonella species among all deliveries and Haemophilus influenzae among cesarean-delivered infants. Conclusion Our findings suggest that intestinal microbial diversity and the relative abundance of key taxa in early infancy may influence susceptibility to respiratory infection, wheezing, and diarrhea.
Collapse
Affiliation(s)
- Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Hilary G. Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Emily R. Baker
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Zhigang Li
- Department of Biostatistics, University of Florida, Gainesville, FL USA
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
5
|
Zhang T, Sha HY, Li ZJ. Diversity of indigenous bacteria in fermented dough with Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhang L, Yao L, Guo Y, Li X, Ma L, Sun R, Han X, Liu J, Huang J. Oral SARS-CoV-2 Spike Protein Recombinant Yeast Candidate Prompts Specific Antibody and Gut Microbiota Reconstruction in Mice. Front Microbiol 2022; 13:792532. [PMID: 35464985 PMCID: PMC9022078 DOI: 10.3389/fmicb.2022.792532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
A recent study showed that patients with coronavirus disease 2019 (COVID-19) have gastrointestinal symptoms and intestinal flora dysbiosis. Yeast probiotics shape the gut microbiome and improve immune homeostasis. In this study, an oral candidate of yeast-derived spike protein receptor-binding domain (RBD) and fusion peptide displayed on the surface of the yeast cell wall was generated. The toxicity and immune efficacy of oral administration were further performed in Institute of Cancer Research (ICR) mice. No significant difference in body weights, viscera index, and other side effects were detected in the oral-treated group. The detectable RBD-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and more complex microbiota were detected from oral administration mice compared with those of the control group. Interestingly, the recombinant yeast was identified in female fetal of the high-dose group. These results revealed that the displaying yeast could fulfill the agent-driven immunoregulation and gut microbiome reconstitution. The findings will shed light on new dimensions against SARS-CoV-2 infection with the synergistic oral agents as promising non-invasive immunization and restoring gut flora.
Collapse
Affiliation(s)
- Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lan Yao
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyang Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Li Ma
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xueqing Han
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jing Liu
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, China
- Jing Liu,
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- *Correspondence: Jinhai Huang,
| |
Collapse
|
7
|
Russell MM, Leimanis-Laurens ML, Bu S, Kinney GA, Teoh ST, McKee RAL, Ferguson K, Winters JW, Lunt SY, Prokop JW, Rajasekaran S, Comstock SS. Loss of Health Promoting Bacteria in the Gastrointestinal Microbiome of PICU Infants with Bronchiolitis: A Single-Center Feasibility Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:114. [PMID: 35053739 PMCID: PMC8774632 DOI: 10.3390/children9010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The feasibility of gastrointestinal (GI) microbiome work in a pediatric intensive care unit (PICU) to determine the GI microbiota composition of infants as compared to control infants from the same hospital was investigated. In a single-site observational study at an urban quaternary care children's hospital in Western Michigan, subjects less than 6 months of age, admitted to the PICU with severe respiratory syncytial virus (RSV) bronchiolitis, were compared to similarly aged control subjects undergoing procedural sedation in the outpatient department. GI microbiome samples were collected at admission (n = 20) and 72 h (n = 19) or at time of sedation (n = 10). GI bacteria were analyzed by sequencing the V4 region of the 16S rRNA gene. Alpha and beta diversity were calculated. Mechanical ventilation was required for the majority (n = 14) of study patients, and antibiotics were given at baseline (n = 8) and 72 h (n = 9). Control subjects' bacterial communities contained more Porphyromonas, and Prevotella (p = 0.004) than those of PICU infants. The ratio of Prevotella to Bacteroides was greater in the control than the RSV infants (mean ± SD-1.27 ± 0.85 vs. 0.61 ± 0.75: p = 0.03). Bacterial communities of PICU infants were less diverse than those of controls with a loss of potentially protective populations.
Collapse
Affiliation(s)
- Madeleine M. Russell
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI 48824, USA; (M.M.R.); (S.B.); (G.A.K.); (S.S.C.)
| | - Mara L. Leimanis-Laurens
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.W.W.); (J.W.P.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (R.-A.L.M.); (K.F.)
| | - Sihan Bu
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI 48824, USA; (M.M.R.); (S.B.); (G.A.K.); (S.S.C.)
| | - Gigi A. Kinney
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI 48824, USA; (M.M.R.); (S.B.); (G.A.K.); (S.S.C.)
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (S.T.T.); (S.Y.L.)
| | - Ruth-Anne L. McKee
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (R.-A.L.M.); (K.F.)
| | - Karen Ferguson
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (R.-A.L.M.); (K.F.)
| | - John W. Winters
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.W.W.); (J.W.P.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (R.-A.L.M.); (K.F.)
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (S.T.T.); (S.Y.L.)
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.W.W.); (J.W.P.); (S.R.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.W.W.); (J.W.P.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (R.-A.L.M.); (K.F.)
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI 48824, USA; (M.M.R.); (S.B.); (G.A.K.); (S.S.C.)
| |
Collapse
|
8
|
Woodall CA, McGeoch LJ, Hay AD, Hammond A. Respiratory tract infections and gut microbiome modifications: A systematic review. PLoS One 2022; 17:e0262057. [PMID: 35025938 PMCID: PMC8757905 DOI: 10.1371/journal.pone.0262057] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15-2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.
Collapse
Affiliation(s)
- Claire A. Woodall
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Luke J. McGeoch
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alastair D. Hay
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashley Hammond
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z, Shao J. Effects of Infant Formula Supplemented With Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial. Front Cell Infect Microbiol 2021; 11:650407. [PMID: 33854983 PMCID: PMC8039316 DOI: 10.3389/fcimb.2021.650407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence suggest that the intestinal microbiota plays crucial roles in infant development, and that it is highly influenced by extrinsic and intrinsic factors. Prebiotic-containing infant formula may increase gastrointestinal tolerance and improve commensal microbiota composition. However, it remains unknown whether supplementation of milk-formulas with prebiotics and 1,3-olein-2-palmitin (OPO) can achieve feeding outcomes similar to those of breastfeeding. In the present study, we investigated the effects of two kinds of infant formula with different additives on the overall diversity and composition of the fecal microbiota, to determine which was closer to breastfeeding. A total of 108 infants were enrolled, including breastfeeding (n=59) and formula feeding group (n=49). The formula feeding infants were prospectively randomly divided into a standard formula group (n=18), and a supplemented formula group(n=31). The fecal samples were collected at 4 months after intervention. Fecal microbiota analysis targeting the V4 region of the 16S rRNA gene was performed using MiSeq sequencing. The overall bacterial diversity and composition, key functional bacteria, and predictive functional profiles in the two different formula groups were compared with breastfeeding group. We found that the alpha diversity of the gut microbiota was not significantly different between the OPO and breastfeeding groups with Chaos 1 index (p=0.346). The relative abundances of Enhydrobacter and Akkermansia in the OPO group were more similar to those of the breastfeeding group than to those of the standard formula group. The gut microbiota metabolism function prediction analysis showed that the supplemented formula group was similar to the breastfeeding group in terms of ureolysis (p=0.297). These findings suggest that, when formula supplemented with prebiotics and OPO was given, the overall bacterial diversity and parts of the composition of the fecal microbiota would be similar to that of breastfeeding infants.
Collapse
Affiliation(s)
- Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuangshuang Zheng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kexin Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xin Xu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lina Lv
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Wang X, Zhang M, Wang W, Lv H, Zhang H, Liu Y, Tan Z. The in vitro Effects of the Probiotic Strain, Lactobacillus casei ZX633 on Gut Microbiota Composition in Infants With Diarrhea. Front Cell Infect Microbiol 2020; 10:576185. [PMID: 33072628 PMCID: PMC7533593 DOI: 10.3389/fcimb.2020.576185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
We investigated the in vitro effects of Lactobacillus casei ZX633 on gut microorganism composition in infants with diarrhea. For this purpose, 103 feces samples from healthy infants (healthy group) and 300 diarrhea samples from infants (diarrhea group) were collected, and diarrhea feces were treated with L. casei ZX633, which was previously isolated from healthy infant feces (treatment group). We used microbial dilution plate methods, high performance liquid chromatography (HPLC) and high-throughput sequencing approaches to analyze viable main microorganism counts, short chain fatty acid (SCFA) concentrations, and intestinal microbiota composition in feces, respectively. Our data showed that L. casei ZX633 supplementation increased the numbers of Escherichia coli, yeasts, lactic acid bacteria (LAB) and aerobic-bacteria, raised propionic acid levels but reduced four other SCFAs, which are close to the healthy group. Alpha diversity results indicated that microbial diversity and richness decreased in treatment group. Bacterial community analyses revealed that microbial structures of the treatment group tended toward the healthy group; i.e., Escherichia-Shigella and Clostridioides abundance increased, and there was a reduction in the abundance of Streptococcus, Bacteroides, Enterococcus and Veillonella. In conclusion, L. casei ZX633 isolated from healthy infant feces, may be effective in improving infant diarrhea microbiota, potentially providing a new probiotic strain to reduce the incidence of diarrhea associated with bacterial disease in infants.
Collapse
Affiliation(s)
- Xing Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Weidong Wang
- The Third Affiliated Hospital Xinxiang Medical University, Xinxiang, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yuan Liu
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res 2020; 2020:2340670. [PMID: 32802893 PMCID: PMC7415116 DOI: 10.1155/2020/2340670] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.
Collapse
|
12
|
Yang K, Dong W. Perspectives on Probiotics and Bronchopulmonary Dysplasia. Front Pediatr 2020; 8:570247. [PMID: 33194897 PMCID: PMC7649774 DOI: 10.3389/fped.2020.570247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease of preterm infants, associated with high morbidity and hospitalization expenses. With the revolutionary advances in microbiological analysis technology, increasing evidence indicates that children with BPD are affected by lung microbiota dysbiosis, which may be related to the illness occurrence and progression. However, dysbiosis treatment in BPD patients has not been fully investigated. Probiotics are living microorganisms known to improve human health for their anti-inflammatory and anti-tumor effects, and particularly by balancing gut microbiota composition, which promotes gut-lung axis recovery. The aim of the present review is to examine current evidence of lung microbiota dysbiosis and explore potential applications of probiotics in BPD, which may provide new insights into treatment strategies of this disease.
Collapse
Affiliation(s)
- Kun Yang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|