1
|
Maral-Gül D, Eltem R. Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi. Int Microbiol 2024:10.1007/s10123-024-00490-1. [PMID: 38376639 DOI: 10.1007/s10123-024-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Pesticides, used in agriculture to control plant diseases, pose risks to the environment and human health. To address this, there's a growing focus on biocontrol, using microorganisms instead of chemicals. In this study, we aimed to identify Bacillus isolates as potential biological control agents. We tested 1574 Bacillus isolates for antifungal effects against pathogens like Botrytis cinerea, Fusarium solani, and Rhizoctonia solani. Out of these, 77 isolates formed inhibition zones against all three pathogens. We then investigated their lytic enzyme activities (protease, chitinase, and chitosanase) and the production of antifungal metabolites (siderophore and hydrogen cyanide). Coagulase activity was also examined to estimate potential pathogenicity in humans and animals. After evaluating all mechanisms, 19 non-pathogenic Bacillus isolates with significant antifungal effects were chosen. Molecular identification revealed they belonged to B. subtilis (n = 19) strains. The 19 native Bacillus strains, demonstrating strong antifungal effects in vitro, have the potential to form the basis for biocontrol product development. This could address challenges in agricultural production, marking a crucial stride toward sustainable agriculture.
Collapse
Affiliation(s)
- Derya Maral-Gül
- Graduate School of Natural and Applied Sciences, Department of Bioengineering, Ege University, 35100, Bornova-Izmir, Türkiye.
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Mu F, Chen X, Fu Z, Wang X, Guo J, Zhao X, Zhang B. Genome and Transcriptome Analysis to Elucidate the Biocontrol Mechanism of Bacillus amyloliquefaciens XJ5 against Alternaria solani. Microorganisms 2023; 11:2055. [PMID: 37630615 PMCID: PMC10459136 DOI: 10.3390/microorganisms11082055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Early blight, caused by Alternaria solani, is an important disease affecting tomatoes. Biological control offers an environmentally friendly approach to controlling pathogens. Herein, we identified a B. amyloliquefaciens strain XJ5 and investigated its biocontrol mechanism against A. solani. A. solani growth was significantly inhibited by XJ5, with the inhibition rate of cell-free culture supernatants reaching 82.3%. Furthermore, XJ5 crude protein extracts inhibited conidia germination and altered the mycelial morphology of A. solani. To uncover the potential biocontrol mechanism of XJ5, we analyzed its genome sequence and transcriptome. The genome of XJ5 comprised a 4.16 Mb circular chromosome and two circular plasmids. A total of 13 biosynthetic gene clusters and 127 genes encoding hydrolases were identified, suggestive of the ability of XJ5 to secrete antagonistic secondary metabolites and hydrolases. Transcript analysis revealed 174 differentially expressed genes on exposing A. solani to XJ5 crude protein extracts. The expression of genes related to chitin and mannose synthesis was downregulated, indicating that XJ5 metabolites may impact chitin and mannose synthesis in A. solani. Overall, these findings enhance our understanding of the interactions between B. amyloliquefaciens and phytopathogens and pave the way for the agricultural application of this promising biocontrol agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baojun Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.M.); (Z.F.)
| |
Collapse
|
3
|
Yarullina L, Cherepanova EA, Burkhanova GF, Sorokan AV, Zaikina EA, Tsvetkov VO, Mardanshin IS, Fatkullin IY, Kalatskaja JN, Yalouskaya NA, Nikalaichuk VV. Stimulation of the Defense Mechanisms of Potatoes to a Late Blight Causative Agent When Treated with Bacillus subtilis Bacteria and Chitosan Composites with Hydroxycinnamic Acids. Microorganisms 2023; 11:1993. [PMID: 37630553 PMCID: PMC10458051 DOI: 10.3390/microorganisms11081993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Phytophthora infestans is, worldwide, one of the main causal agents of epiphytotics in potato plantings. Prevention strategies demand integrated pest management, including modeling of beneficial microbiomes of agroecosystems combining microorganisms and natural products. Chitooligosaccharides and their derivatives have great potential to be used by agrotechnology due to their ability to elicit plant immune reactions. The effect of combining Bacillus subtilis 26D and 11VM and conjugates of chitin with hydroxycinnamates on late blight pathogenesis was evaluated. Mechanisms for increasing the resistance of potato plants to Phytophthora infestans were associated with the activation of the antioxidant system of plants and an increase in the level of gene transcripts that encode PR proteins: basic protective protein (PR-1), thaumatin-like protein (PR-5), protease inhibitor (PR-6), and peroxidase (PR-9). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of the combined treatment of plants with B. subtilis and conjugates of chitin with hydroxycinnamates indicates that, in this case, the development of protective reactions in potato plants to late blight proceeds synergistically, where B. subtilis primes protective genes, and chitosan composites act as a trigger for their expression.
Collapse
Affiliation(s)
- Liubov Yarullina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
- Department of Biology, Ufa University of Science and Technology, 450076 Ufa, Russia;
| | - Ekaterina A. Cherepanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Antonina V. Sorokan
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Evgenia A. Zaikina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | | | - Ildar S. Mardanshin
- Bashkir Research Institute of Agriculture, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia;
| | - Ildus Y. Fatkullin
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Joanna N. Kalatskaja
- Institute of Experimental Botany Named after V. F. Kuprevich of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (J.N.K.); (N.A.Y.)
| | - Ninel A. Yalouskaya
- Institute of Experimental Botany Named after V. F. Kuprevich of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (J.N.K.); (N.A.Y.)
| | - Victoria V. Nikalaichuk
- Institute of New Materials Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus;
| |
Collapse
|
4
|
Zhao G, Sun T, Zhang Z, Zhang J, Bian Y, Hou C, Zhang D, Han S, Wang D. Management of take-all disease caused by Gaeumannomyces graminis var. tritici in wheat through Bacillus subtilis strains. Front Microbiol 2023; 14:1118176. [PMID: 36819043 PMCID: PMC9929034 DOI: 10.3389/fmicb.2023.1118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Wheat (Triticum aestivum) is the second largest grain crop worldwide, and one of the three major grain crops produced in China. Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt) infection, is a widespread and devastating soil-borne disease that harms wheat production. At present, the prevention and control of wheat take-all depend largely on the application of chemical pesticides. Chemical pesticides, however, not only lead to increased drug resistance of pathogens but also leave significant residues in the soil, causing serious environmental pollution. In this study, we investigated the application of Bacillus subtilis to achieve take-all disease control in wheat while reducing pesticide application. Antagonistic bacteria were screened by plate test, species identification of strains was performed by Gram staining and sequencing of 16s rDNA, secondary metabolite activity of strains was detected by clear circle method, strain compatibility and effect of compounding on Ggt were detected by plate, and the application prospects of specific strains were analyzed by greenhouse and field experiments. We found that five B. subtilis strains, JY122, JY214, ZY133, NW03, Z-14, had significant antagonistic effects against Ggt, and could secrete antimicrobial proteins including amylase, protease, and cellulase. Furthermore, Z-14 and JY214 cultures have also been shown to change the morphology of Ggt mycelium. These results also showed that Z-14, JY214, and their combination can control take-all disease in wheat at a reduced level of pesticide use. In summary, we screened two Bacillus spp. strains, Z-14 and JY214, that could act as antagonists that contribute to the biological control of wheat take-all disease. These findings provide resources and ideas for controlling crop diseases in an environmentally friendly manner.
Collapse
Affiliation(s)
- Gangyi Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zina Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingjing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yinbo Bian
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dongdong Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China,*Correspondence: Shengfang Han ✉
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China,Dongmei Wang ✉
| |
Collapse
|
5
|
Świątczak J, Kalwasińska A, Wojciechowska A, Brzezinska MS. Physiological properties and genomic insights into the plant growth-promoting rhizobacterium Brevibacillus laterosporus K75 isolated from maize rhizosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1432-1441. [PMID: 36181696 DOI: 10.1002/jsfa.12238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND When looking for a safer alternative to pesticides that are potentially harmful to living organisms, one of the directions worth looking at are plant growth-promoting rhizobacteria. The purpose of the research was a comprehensive characterization of Brevibacillus laterosporus K75, a strain isolated from maize rhizosphere. Many studies have proved B. laterosporus to be a biocontrol agent; however, little is known about B. laterosporus as a plant growth-promoting rhizobacterium. RESULTS Ninety strains were screened for plant growth-promoting activities. Four strains with the best plant growth-promoting traits (Rhodococcus qingshengii K8, Bacillus subtilis subsp. stercoris K73, Brevibacillus laterosporus K75, and Brevibacillus laterosporus K89) were used to research their effect on maize growth. Under sterile conditions, B. laterosporus K75 showed the best stimulatory effect, significantly improving the weight of roots, shoots and leaves, and considerably increasing content of chlorophyll. In unsterilized soil, B. laterosporus K75 significantly improved length of roots and weight of leaves compared to the K73, K89, and untreated control. Moreover, B. laterosporus K75 significantly increased specific leaf area compared to the untreated control and to other inoculant treatments. The genome of B. laterosporus K75 was compared to the recently published B. laterosporus MG64. Genome-mining displayed differences in identified plant growth-promoting genes and biosynthetic gene clusters of secondary metabolites. The B. laterosporus K75 genome possessed additional genes involved in indole-3-acetic acid production and phosphate solubilization that could be attributed to its ability to enhance maize growth. CONCLUSION Our study demonstrated that B. laterosporus K75 is a promising candidate for use in inoculant formulation, effectively facilitating maize growth. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
6
|
Mghazli N, Bruneel O, Zouagui R, Hakkou R, Sbabou L. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front Microbiol 2022; 13:1026991. [PMID: 36590425 PMCID: PMC9798287 DOI: 10.3389/fmicb.2022.1026991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morocco holds the vast majority of the world's phosphate reserves, but due to the processes involved in extracting and commercializing these reserves, large quantities of de-structured, nutritionally deficient mine phosphate wastes are produced each year. In a semi-arid climate, these wastes severely hamper plant growth and development leading to huge unvegetated areas. Soil indigenous Plant Growth-Promoting Bacteria (PGPB) play a pivotal role in restauration of these phosphate mining wastes by revegetation, by increasing plants development, soil functioning, and nutrient cycling. The development of a vegetative cover above the degraded phosphate wastes, could stabilize and reintegrate these wastes in the surrounding environment. The current study's objectives were to isolate, characterize, and identify indigenous bacterial strains, and test their PGP activity in vitro and, for the best-performing strains in planta, in order to assess their potential for acting as biofertilizers. A quantitative test for the synthesis of auxin and the production of siderophores as well as a qualitative test for the solubilization of phosphate were performed on all isolated bacterial strains. The production of hydrogen cyanide (HCN), exopolysaccharides (EPS), and enzymes were also examined. Three bacteria, selected among the best PGPB of this study, were tested in planta to determine whether such indigenous bacteria could aid plant growth in this de-structured and nutrient-poor mining soil. Using 16S rRNA gene sequencing, 41 bacterial strains were isolated and 11 genera were identified: Acinetobacter, Agrococcus, Bacillus, Brevibacterium, Microbacterium, Neobacillus, Paenibacillus, Peribacillus, Pseudarthrobacter, Stenotrophomonas, and Raoultella. Among the three best performing bacteria (related to Bacillus paramycoides, Brevibacterium anseongense, and Stenotrophomonas rhizophila), only Stenotrophomonas rhizophila and Brevibacterium anseongense were able to significantly enhance Lupinus albus L. growth. The best inoculation results were obtained using the strain related to Stenotrophomonas rhizophila, improving the plant's root dry weight and chlorophyll content. This is also, to our knowledge, the first study to show a PGP activity of Brevibacterium anseongense.
Collapse
Affiliation(s)
- Najoua Mghazli
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco,HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Odile Bruneel
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Rahma Zouagui
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Hakkou
- Laboratoire des Matériaux Innovants, Energie et Développement Durable (IMED)_Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakesh, Morocco,Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Laila Sbabou
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco,*Correspondence: Laila Sbabou,
| |
Collapse
|
7
|
Manikandan A, Johnson I, Jaivel N, Krishnamoorthy R, SenthilKumar M, Raghu R, Gopal NO, Mukherjee PK, Anandham R. Gamma-induced mutants of Bacillus and Streptomyces display enhanced antagonistic activities and suppression of the root rot and wilt diseases in pulses. Biomol Concepts 2022; 13:103-118. [DOI: 10.1515/bmc-2022-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aims to increase Bacillus and Streptomyces antagonistic activity against the root rot and wilt diseases of pulses caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. udum, respectively. To increase antagonistic action, Bacillus subtilis BRBac4, Bacillus siamensis BRBac21, and Streptomyces cavourensis BRAcB10 were subjected to random mutagenesis using varying doses of gamma irradiation (0.5–3.0 kGy). Following the irradiation, 250 bacterial colonies were chosen at random for each antagonistic strain and their effects against pathogens were evaluated in a plate assay. The ERIC, BOX, and random amplified polymorphic studies demonstrated a clear distinction between mutant and wild-type strains. When mutants were compared to wild-type strains, they showed improved plant growth-promoting characteristics and hydrolytic enzyme activity. The disease suppression potential of the selected mutants, B. subtilis BRBac4-M6, B. siamensisi BRBac21-M10, and S. cavourensis BRAcB10-M2, was tested in green gram, black gram, and red gram. The combined inoculation of B. siamensis BRBac21-M10 and S. cavourensis BRAcB10-M2 reduced the incidence of root rot and wilt disease. The same treatment also increased the activity of the defensive enzymes peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. These findings suggested that gamma-induced mutation can be exploited effectively to improve the biocontrol characteristics of Bacillus and Streptomyces. Following the field testing, a combined bio-formulation of these two bacteria may be utilised to address wilt and root-rot pathogens in pulses.
Collapse
Affiliation(s)
- Ariyan Manikandan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Iruthayasamy Johnson
- Department of Plant Pathology, Tamil Nadu Agricultural University (TNAU) , Coimbatore , Tamil Nadu , India
| | - Nanjundan Jaivel
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Ramasamy Krishnamoorthy
- Department of Crop Management, Vanavarayar Institute of Agriculture , Pollachi , Tamil Nadu , India
| | - Murugaiyan SenthilKumar
- Department of Crop Management, Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU) , Eachangkottai , Tamil Nadu , India
| | - Rajasekaran Raghu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Nellaiappan Olaganathan Gopal
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Prasun K. Mukherjee
- Environmental Biotechnology Section Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| |
Collapse
|
8
|
Antifungal Compounds of Plant Growth-Promoting Bacillus Species. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Thakur N, Nath AK, Chauhan A, Gupta R. Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India. Biotechnol Appl Biochem 2021; 69:1830-1842. [PMID: 34486170 DOI: 10.1002/bab.2250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Newly isolated Bacillus cereus strain NK91 was characterized for extracellular chitinase production. Partially purified chitinase showed a molecular weight of 43.7 kDa in SDS-PAGE analysis. The optimum pH and temperature for the partially purified enzyme were 7.0 and 40°C, respectively. The addition of Mn2+ resulted in a 21% increase in enzyme activity as compared to the control. The Vmax and Km of the enzyme were determined as 76.9 μmol/min and 0.07 mg/mL, respectively. This enzyme exhibited stronger antifungal activity towards Fusarium oxysporum (66.7%), Rhizoctonia solani (64.6%), and Colletotrichum gloeosporioides (63%), and transmission electron microscopy and scanning transmission electron microscopy analysis showed considerable changes in cell wall structure with the treatment of purified chitinase as compared to control. Therefore, this enzyme reveals its biocontrol potential against potent phytopathogens in agriculture that can be helpful in swapping harmful as well as expensive fungicides.
Collapse
Affiliation(s)
- Nirja Thakur
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Amarjit K Nath
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Anjali Chauhan
- Department of Soil Science and Water Management, College of Forestry, Dr Y r University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| | - Rakesh Gupta
- Directorate of Research, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| |
Collapse
|
10
|
Chemical Proprieties of Biopolymers (Chitin/Chitosan) and Their Synergic Effects with Endophytic Bacillus Species: Unlimited Applications in Agriculture. Molecules 2021; 26:molecules26041117. [PMID: 33672446 PMCID: PMC7923285 DOI: 10.3390/molecules26041117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).
Collapse
|