1
|
Santos ALED, Souza ROS, Barbosa FEV, Santos MHCD, Grangeiro YA, Martins AMC, Santos-Gomes G, Fonseca IPD, Silva CGLD, Teixeira CS. Concanavalin A, lectin from Canavalia ensiformis seeds has Leishmania infantum antipromastigote activity mediated by carbohydrate recognition domain. Chem Biol Interact 2024; 399:111156. [PMID: 39029856 DOI: 10.1016/j.cbi.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Leishmaniases, caused by Leishmania parasites, are widespread and pose significant health risks globally. Visceral leishmaniasis (VL) is particularly prevalent in Brazil, with high morbidity and mortality rates. Traditional treatments, such as pentavalent antimonials, have limitations due to toxicity and resistance. Therefore, exploring new compounds like lectins is crucial. Concanavalin A (ConA) has shown promise in inhibiting Leishmania growth. This study aimed to evaluate its leishmanicidal effect on L. infantum promastigotes and understand its mechanism of action. In vitro tests demonstrated inhibition of promastigote growth when treated with ConA, with IC50 values ranging from 3 to 5 μM over 24-72 h. This study suggests that ConA interacts with L. infantum glycans. Additionally, ConA caused damage to the membrane integrity of parasites and induced ROS production, contributing to parasite death. Scanning electron microscopy confirmed morphological alterations in treated promastigotes. ConA combined with the amphotericin B (AmB) showed synergistic effects, reducing the required dose of AmB, and potentially mitigating its toxicity. ConA demonstrated no cytotoxic effects on macrophages, instead stimulating their proliferation. These findings reinforce that lectin exhibits promising leishmanicidal activity against L. infantum promastigotes, making ConA a potential candidate for leishmaniasis treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice Maria Costa Martins
- Departamento de Análises Clínicas e toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | | | - Claudener Souza Teixeira
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil; Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil.
| |
Collapse
|
2
|
Reis WF, Silva MES, Gondim ACS, Torres RCF, Carneiro RF, Nagano CS, Sampaio AH, Teixeira CS, Gomes LCBF, Sousa BL, Andrade AL, Teixeira EH, Vasconcelos MA. Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties. Protein J 2024; 43:559-576. [PMID: 38615284 DOI: 10.1007/s10930-024-10199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56-50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of -26,642.69141/Normalized DOPE score of -1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.
Collapse
Affiliation(s)
- Willian F Reis
- Departamento de Ciências da Natureza E da Terra, Universidade Do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil
| | - Marcos E S Silva
- Faculdade de Educação de Itapipoca, Universidade Estadual Do Ceará, Itapipoca, CE, Brazil
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | - Ana C S Gondim
- Departamento de Química Orgânica E Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Renato C F Torres
- Centro de Ciências Agrárias E da Biodiversidade, Universidade Federal Do Cariri, Crato, CE, Brazil
| | - Rômulo F Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Celso S Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Alexandre H Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias E da Biodiversidade, Universidade Federal Do Cariri, Crato, CE, Brazil
| | - Lenita C B F Gomes
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual Do Ceará, Limoeiro Do Norte, CE, Brazil
| | - Bruno L Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual Do Ceará, Limoeiro Do Norte, CE, Brazil
| | - Alexandre L Andrade
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Edson H Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Mayron A Vasconcelos
- Departamento de Ciências da Natureza E da Terra, Universidade Do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil.
- Faculdade de Educação de Itapipoca, Universidade Estadual Do Ceará, Itapipoca, CE, Brazil.
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil.
| |
Collapse
|
3
|
Duarte JDA, Oliveira Neto JED, Torres RCF, Sousa ARDO, Andrade AL, Chaves RP, Carneiro RF, Vasconcelos MAD, Teixeira CS, Teixeira EH, Nagano CS, Sampaio AH. Structural characterization of a galectin from the marine sponge Aplysina lactuca (ALL) with synergistic effects when associated with antibiotics against bacteria. Biochimie 2023; 214:165-175. [PMID: 37437685 DOI: 10.1016/j.biochi.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Lectins presents the ability to interact with glycans and trigger varied responses, including the inhibition of the development of various pathogens. Structural studies of these proteins are essential to better understand their functions. In marine sponges, so far only a few lectins have their primary structures completely determined. Thus, the objective of this work was to structurally characterize and evaluate antibacterial potential, in association with different antibiotics, of the lectin isolated from the marine sponge Aplysina lactuta (ALL). ALL is a homotetramer of 60 kDa formed by four 15 kDa-subunits. The lectin showed affinity only for the glycoproteins fetuin, asialofetuin, mucin type III, and bovine submaxillary mucin type I. The complete amino acid sequences of two isoforms of ALL, named ALL-a and ALL-b, were determined by a combination of Edman degradation and overlapped peptides sequenced by tandem mass spectrometry. ALL-a and ALL-b have 144 amino acids with molecular masses of 15,736 Da and 15,985 Da, respectively. Both structures contain conserved residues typical of the galectin family. ALL is a protein with antibacterial potential, when in association with ampicillin and oxacillin the lectin potentiates its antibiotic effect, included Methicillin-resistant Staphylococcus strains. Thus, ALL shows to be a molecule with potential for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Jéssica de Assis Duarte
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - José Eduardo de Oliveira Neto
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Renato Cézar Farias Torres
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | | | - Alexandre Lopes Andrade
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil
| | - Renata Pinheiro Chaves
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Rômulo Farias Carneiro
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Mayron Alves de Vasconcelos
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil; State University of Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis, MG, Brazil; Faculdade de Ciências Exatas e Naturais Universidade Do Estado Do Rio Grande Do Norte, 59610-210, Mossoró, RN, Brazil
| | - Claudener Souza Teixeira
- Center for Agricutural Scienses and Biodiversity, Federal University of Cariri, Crato, CE, Brazil
| | - Edson Holanda Teixeira
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Alexandre Holanda Sampaio
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil.
| |
Collapse
|
4
|
Ahmed S, Baloch MN, Moin SF, Musa H. Isolation of lectin from Musa acuminata for its antibiofilm potential against Methicillin-resistant Staphylococcus aureus and its synergistic effect with Enterococcus species. Arch Microbiol 2023; 205:181. [PMID: 37031295 DOI: 10.1007/s00203-023-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/10/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is an emerging pathogen posing a considerable burden on the healthcare system due to its involvement in skin and soft tissue infections (SSTIs). Lectins are carbohydrate binding proteins found ubiquitously in animals, plants and microorganisms. Extraction and isolation of proteins from Musa acuminata were performed by using Affinity chromatography with Sephadex G 75 to determine antibiofilm activity against MRSA. Enterococcus strains obtained from dairy products, beans and vegetables were also screened for its potential to inhibit growth and biofilm formation of MRSA by using 96 well microtiter plates. Synergistic effect of cell free supernatant of Enterococcus with proteins from ripe banana were also tested. BanLec was successfully isolated and appeared as 15 KDa band after SDS-PAGE (15%) while multiple bands of unbound protein fractions were observed. The unbound fractions showed inhibition of planktonic cells and biofilm but BanLec exhibited no significant effect. The CFS of Enterococcus faecium (LCM002), Enterococcus lactis (LCM003) and Enterococcus durans (LCM004 and LCM005) displayed antagonistic effects against pathogen. The synergistic effect of CFS from E. lactis (LCM003) and unbound proteins showed inhibition of biofilm and pathogenic growth. This study demonstrates the use of Enterococcus species and plant proteins against pathogens and results suggested that it can inhibit the growth of resistant strains of Staphylococcus aureus and their synergistic effect has opened new ways to tackle emerging resistance. Furthermore, after assessment of Enterococcus as probiotics, this could be used in food industries as well as in treatment of severe skin infections.
Collapse
Affiliation(s)
- Summra Ahmed
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | | | - Syed Faraz Moin
- Dr. Zafar Husnain Zaidi National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Hina Musa
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Santos MHC, Santos VF, Freitas PR, Silva RRS, Roma RR, Santos ALE, Ribeiro DA, Coutinho HDM, Rocha BAM, Oliveira MME, Teixeira CS. Dioclea violacea lectin increases the effect of neomycin against multidrug-resistant strains and promotes the purification of the antibiotic in immobilized lectin column. Int J Biol Macromol 2023; 236:123941. [PMID: 36893486 DOI: 10.1016/j.ijbiomac.2023.123941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
DVL is a Man/Glc-binding lectin from Dioclea violacea seeds that has the ability to interact with the antibiotic gentamicin. The present work aimed to evaluate whether the DVL has the ability to interact with neomycin via CRD and to examine the ability of this lectin to modulate the antibiotic effect of neomycin against multidrug-resistant strains (MDR). The hemagglutinating activity test revealed that neomycin inhibited the hemagglutinating activity of DVL with a minimum inhibitory concentration of 50 mM, indicating that the antibiotic interacts with DVL via the carbohydrate recognition domain (CRD). DVL immobilized on cyanogen bromide-activated Sepharose® 4B bound 41 % of the total neomycin applied to the column, indicating that the DVL-neomycin interaction is efficient for purification processes. Furthermore, the minimum inhibitory concentrations (MIC) obtained for DVL against all strains studied were not clinically relevant. However, when DVL was combined with neomycin, a significant increase in antibiotic activity was observed against S. aureus and P. aeruginosa. These results demonstrate the first report of lectin-neomycin interaction, indicating that immobilized DVL has the potential to isolate neomycin by affinity chromatography. Moreover, DVL increased the antibiotic activity of neomycin against MDR, suggesting that it is a potent adjuvant in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Maria H C Santos
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, MA, Brazil
| | - Valdenice F Santos
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, MA, Brazil
| | - Priscilla R Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renato Rodrigues Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ana L E Santos
- Agrarian and Biodiversity Sciences Center, Federal University of Cariri, Crato, CE, Brazil
| | - Daiany Alves Ribeiro
- Agrarian and Biodiversity Sciences Center, Federal University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel M E Oliveira
- Taxonomy, Biochemistry and fungal Bioprospecting Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Claudener S Teixeira
- Agrarian and Biodiversity Sciences Center, Federal University of Cariri, Crato, CE, Brazil.
| |
Collapse
|
6
|
Costa ACM, Malveira EA, Mendonça LP, Maia MES, Silva RRS, Roma RR, Aguiar TKB, Grangeiro YA, Souza PFN. Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens. Curr Protein Pept Sci 2022; 23:851-861. [PMID: 36239726 DOI: 10.2174/1389203724666221014142740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.
Collapse
Affiliation(s)
- Ana C M Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Lidiane P Mendonça
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Maria E S Maia
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Yasmim A Grangeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil.,Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Caixa 60430- 275 Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Development and characterization of alginate-derived crosslinked hydrogel membranes incorporated with ConA and gentamicin for wound dressing applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
de Oliveira dos Santos AM, Duarte AE, Costa AR, da Silva AA, Rohde C, Silva DG, de Amorim ÉM, da Cruz Santos MH, Pereira MG, Deprá M, de Santana SL, da Silva Valente VL, Teixeira CS. Canavalia ensiformis lectin induced oxidative stress mediate both toxicity and genotoxicity in Drosophila melanogaster. Int J Biol Macromol 2022; 222:2823-2832. [DOI: 10.1016/j.ijbiomac.2022.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
9
|
Konozy EHE, Osman MEFM, Dirar AI, Ghartey-Kwansah G. Plant lectins: A new antimicrobial frontier. Biomed Pharmacother 2022; 155:113735. [PMID: 36152414 DOI: 10.1016/j.biopha.2022.113735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Pathogenic bacteria, viruses, fungi, parasites, and other microbes constantly change to ensure survival. Several pathogens have adopted strict and intricate strategies to fight medical treatments. Many drugs, frequently prescribed to treat these pathogens, are becoming obsolete and ineffective. Because pathogens have gained the capacity to tolerate or resist medications targeted at them, hence the term antimicrobial resistance (AMR), in that regard, many natural compounds have been routinely used as new antimicrobial agents to treat infections. Thus, plant lectins, the carbohydrate-binding proteins, have been targeted as promising drug candidates. This article reviewed more than 150 published papers on plant lectins with promising antibacterial and antifungal properties. We have also demonstrated how some plant lectins could express a synergistic action as adjuvants to boost the efficacy of obsolete or abandoned antimicrobial drugs. Emphasis has also been given to their plausible mechanism of action. The study further reports on the immunomodulatory effect of plant lectins and how they boost the immune system to curb or prevent infection.
Collapse
Affiliation(s)
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
10
|
Santos JVDO, Porto ALF, Cavalcanti IMF. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics (Basel) 2021; 10:antibiotics10050520. [PMID: 34063213 PMCID: PMC8147472 DOI: 10.3390/antibiotics10050520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antibiotic monotherapy may become obsolete mainly due to the continuous emergence of resistance to available antimicrobials, which represents a major uncertainty to human health. Taking into account that natural products have been an inexhaustible source of new compounds with clinical application, lectins are certainly one of the most versatile groups of proteins used in biological processes, emerging as a promising alternative for therapy. The ability of lectins to recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of activities. Currently the number of antimicrobials in research and development does not match the rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance, and highlight the potential of lectins to modulate the host immune response against oxidative stress.
Collapse
Affiliation(s)
- João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology Animal, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil;
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
- Academic Center of Vitória (CAV), Laboratory of Microbiology and Immunology, Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Correspondence: ; Tel.: + 55-81-2101-2501
| |
Collapse
|