1
|
Sessa L, Oberti H, Abreo E, Pedrini N. Beauveria bassiana transcriptomics reveal virulence-associated shifts during insect lipid assimilation. Appl Microbiol Biotechnol 2024; 108:23. [PMID: 38159119 DOI: 10.1007/s00253-023-12898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Insect cuticular lipids, especially epicuticular hydrocarbons (CHC), have a significant role in insect ecology and interactions with other organisms, including fungi. The CHC composition of a specific insect species may influence the outcome of the interaction with a specific fungal strain. Some insects, such as Piezodorus guildinii, have low susceptibility towards fungal infections seemingly due to their CHC composition. The entomopathogenic fungus Beauveria bassiana can assimilate CHC and incorporate them as building blocks via cytochrome P450 monooxygenases (CYPs). However, little is known about other enzymes that promote the degradation/assimilation of these cuticular components. In this study, we performed a transcriptomic analysis to evaluate the in vitro response of two virulence-contrasting B. bassiana strains when grown on three different P. guildinii CHC sources. We found a different expression profile of virulence-related genes, as well as different GO and KEGG parameters enriched at 4 days post-inoculation, which could help account for the intrinsic virulence and for an alkane-priming virulence enhancement effect. The hypovirulent strain predominantly showed higher expression of cuticle penetration genes, including chitinases, proteases, and CYPs, with GO term categories of "heme binding," "monooxygenase activity," and "peroxisome" pathways enriched. The hypervirulent strain showed higher expression of cell wall remodeling and cell cycle genes, and cuticle adhesion and a distinct set of CYPs, with GO categories of "DNA-binding transcription factor activity" and KEGG pathways corresponding to "meiosis-yeast" and "cell cycle" enriched. These results suggest a delay and alternate routes in pathogenicity-related metabolism in the hypovirulent strain in comparison with the hypervirulent strain. KEY POINTS: •Transcriptomics of two B. bassiana strains grown in P. guildinii cuticular components •Virulence-related genes correlated with virulence enhancement towards P. guildinii •Differentially expressed genes, GOs and KEGGs showed different metabolic timelines associated with virulence.
Collapse
Affiliation(s)
- Lucia Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Héctor Oberti
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay.
| | - Nicolas Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Segura-Vega J, González-Herrera A, Molina-Bravo R, Solano-González S. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. FRONTIERS IN BIOINFORMATICS 2024; 4:1434442. [PMID: 39493578 PMCID: PMC11527780 DOI: 10.3389/fbinf.2024.1434442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background The fungus Beauveria bassiana is widely used for agronomical applications, mainly in biological control. B. bassiana uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited. Methods Eight complete B. bassiana genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates. Results Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2. Conclusion Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.
Collapse
Affiliation(s)
- Juan Segura-Vega
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Allan González-Herrera
- Laboratorio de Control Biológico, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Ramón Molina-Bravo
- Programa de Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefany Solano-González
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| |
Collapse
|
3
|
Lü D, Wang Z, Wang Y, Qin S. Identification of function modules in the co-expression protein-protein interaction network of Bombyx mori in response to Beauveria bassiana infection. J Invertebr Pathol 2024; 207:108214. [PMID: 39366479 DOI: 10.1016/j.jip.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/08/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Beauveria bassiana (B. bassiana) is a common fungal disease in sericulture. Previous research has primarily focused on investigating genes involved in innate immunity. However, the response of Bombyx mori (B. mori) to B. bassiana requires the coordination of other biological processes in addition to the immune system. We measured protein expression profile of B. mori after inoculating B. bassiana using iTRAQ technology in previous. Here we constructed a co-expression protein-protein interaction network of B. mori in response to B. bassiana infection. Subnetworks and modules were analyzed, and the functions of these modules were annotated. The results revealed the identification of numerous proteins associated with cellular immunity, including those involved in phagosomes, lysosomes, mTOR signaling, sugar metabolism, and the ubiquitin-proteasome pathway. Meanwhile, we observed that the pathways involved in protein synthesis were activated, including pyruvate and purine metabolism, RNA transport, ribosome, protein processing in endoplasmic reticulum, and protein export pathways, during B. bassiana infection. Based on this analysis, we selected six candidate genes (shock protein, ribosome, translocon, actin muscle-type A2, peptidoglycan recognition protein, and collagenase) that were found to be related to the response to B. bassiana. Further verification experiments demonstrated significant changes in their expression levels after inoculation with B. bassiana. These research findings provide new insights into the molecular mechanism of insect immune response to fungal infection.
Collapse
Affiliation(s)
- Dingding Lü
- Zhenjiang College, Zhenjiang 212028, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Zihe Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Ya Wang
- Zhenjiang College, Zhenjiang 212028, China
| | - Sheng Qin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
4
|
Lu Z, Zhu Q, Bai Y, Zhao X, Wang H, Peng X, Luo Z, Zhang Y. A fungal pathogen secretes a cell wall-associated β-N-acetylhexosaminidase that is co-expressed with chitinases to contribute to infection of insects. PEST MANAGEMENT SCIENCE 2024; 80:4699-4713. [PMID: 38771009 DOI: 10.1002/ps.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND β-N-acetylhexosaminidases (HEXs) are widely distributed in fungi and involved in cell wall chitin metabolism and utilization of chitin-containing substrates. However, details of the fungal pathogens-derived HEXs in the interaction with their hosts remain limited. RESULTS An insect nutrients-induced β-N-acetylhexosaminidase, BbHex1, was identified from the entomopathogenic fungus Beauveria bassiana, which was involved in cell wall modification and degradation of insect cuticle. BbHex1 was localized to cell wall and secreted, and displayed enzyme activity to degrade the chitinase-hydrolyzed product (GlcNAc)2. Disruption of BbHex1 resulted in a significant decrease in the level of cell wall chitin in the presence of insect nutrients and during infection of insects, with impaired ability to penetrate insect cuticle, accompanying downregulated cell wall metabolism-involved and cuticle-degrading chitinase genes. However, the opposite phenotypes were examined in the gene overexpression strain. Distinctly altered cell wall structures caused by BbHex1 mutation and overexpression led to the easy activation and evasion (respectively) of insect immune response during fungal infection. As a result, BbHex1 contributed to fungal virulence. Bioinformatics analysis revealed that promoters of some co-expressed chitinase genes with the BbHex1 promoter shared conserved transcription factors Skn7, Msn2 and Ste12, and CreA-binding motifs, implying co-regulation of those genes with BbHex1. CONCLUSION These data support a mechanism that the fungal pathogen specifically expresses BbHex1, which is co-expressed with chitinases to modify cell wall for evasion of insect immune recognition and to degrade insect cuticle, and contributes to the fungal virulence against insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Qiankuan Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Yuting Bai
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Du Y, Li J, Chen S, Xia Y, Jin K. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. PEST MANAGEMENT SCIENCE 2024; 80:820-836. [PMID: 37794279 DOI: 10.1002/ps.7812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The fungal genera Metarhizium contain many important multiple species that are used as biocontrol agents and as model organisms for exploring insect-fungal interactions. Metarhizium spp. exhibit different traits of pathogenicity, suggesting that the pathogenesis can be quite distinctive. However, the underlying differences in their pathogenesis remain poorly understood. RESULTS Pathogenicity analysis showed that Metarhizium anisopliae (strain CQMa421) displayed higher virulence against oriental migratory locusts, Locusta migratoria manilensis (Meyen), than the acridid-specific specie Metarhizium acridum (strain CQMa102). Relative to M. acridum, M. anisopliae possessed a higher conidial hydrophobicity, increased ability to penetrate the host, accelerated growth under hypoxia and enhanced ability for the utilization of different carbon sources. Different distributions of carbohydrate epitopes at cell wall surface of M. anisopliae might also contribute to successful evasion of host immune defenses. Comparative genomics showed that M. anisopliae has 98 more virulence-related secreted proteins (133) than M. acridum (35), which can be functionally classified as hydrolases, virulence effectors, cell wall degradation and stress tolerance-related proteins, and helpful to the cuticle penetration and host internal environment adaption. In addition, differences in genomic clusters specifically related to secondary metabolites, including the clusters of Indole-NRPS hybrid, T1PKS-NRPS like hybrid, Betalactone, Fungal-Ripp and NRPS-Terpene hybrid, may lead to differences in core virulence-related secondary metabolite genes in M. acridum (18) and M. anisopliae (36). CONCLUSION The comparative study provided new insights into the different infection strategies between M. anisopliae and M. acridum, and further facilitate the identification of virulence-related genes for the improvement of mycoinsecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Jun Li
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Shaopeng Chen
- Tobacco Leaf Branch of Chongqing Tobacco Company of China Tobacco Corporation, Chongqing, P. R. China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Kai Jin
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| |
Collapse
|
6
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
7
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Gao YP, Luo M, Wang XY, He XZ, Lu W, Zheng XL. Pathogenicity of Beauveria bassiana PfBb and Immune Responses of a Non-Target Host, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:914. [PMID: 36292862 PMCID: PMC9604019 DOI: 10.3390/insects13100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Exploring the pathogenicity of a new fungus strain to non-target host pests can provide essential information on a large scale for potential application in pest control. In this study, we tested the pathogenicity of Beauveria bassiana PfBb on the important agricultural pest Spodoptera frugiperda (Lepidoptera: Noctuidae) by determining the relative activities of protective enzymes and detoxifying enzymes in different larval instars. Our results show that the B. bassiana PfBb strain could infect all six larval instars of S. frugiperda, and its virulence to S. frugiperda larvae gradually increased with an increase in spore concentration. Seven days after inoculation, the LC50 of B. bassiana PfBb was 7.7 × 105, 5.5 × 106, 2.2 × 107, 3.1 × 108, 9.6 × 108, and 2.5 × 1011 spores/mL for first to sixth instars of S. frugiperda, respectively, and the LC50 and LC90 of B. bassiana PfBb for each S. frugiperda instar decreased with infection time, indicating a significant dose effect. Furthermore, the virulence of B. bassiana PfBb to S. frugiperda larvae gradually decreased with an increase in larval instar. The activities of protective enzymes (i.e., catalase, peroxidase, and superoxide dismutase) and detoxifying enzymes (i.e., glutathione S-transferases, carboxylesterase, and cytochrome P450) in S. frugiperda larvae of the first three instars infected with B. bassiana PfBb changed significantly with infection time, but such variations were not obvious in the fifth and sixth instars. Additionally, after being infected with B. bassiana PfBb, the activities of protective enzymes and detoxification enzymes in S. frugiperda larvae usually lasted from 12 to 48 h, which was significantly longer than the control. These results indicate that the pathogenicity of B. bassiana PfBb on the non-target host S. frugiperda was significant but depended on the instar stage. Therefore, the findings of this study suggest that B. bassiana PfBb can be used as a bio-insecticide to control young larvae of S. frugiperda in an integrated pest management program.
Collapse
Affiliation(s)
- Yi-Ping Gao
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mei Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Wang A, Peng S, Lian Y, Yang X, Jia J, Li J, Yang S, Zheng R, Zhou S. Distribution and interaction of the suitable areas of Beauveria bassiana and Bactrocera dorsalis (Hendel). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.990747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate is a key factor affecting the potential distribution of insects, and the host is another important constraint for the distribution of pests. To elucidate changes in the potential distribution of Beauveria bassiana under climate change scenarios, this paper used the data of two different greenhouse gas (GHG) emission scenarios (RCP2.6, RCP8.5) to predict the potential distribution of B. bassiana and its typical host, Bactrocera dorsalis (Hendel), based on the MaxEnt model. Then, the potential distribution of B. bassiana and B. dorsalis (Hendel) was compared, and their suitable growth area’s change and expansion trend under two different GHG emission scenarios were mastered. The results of this study show that the potential distribution area of B. bassiana will increase by 2,050 under the RCP8.5 climate scenario, mainly in central Europe and southwestern Asia, with an increased area of 3.28 × 105 km2. However, under the climate scenario of RCP2.6, the potential distribution area for B. bassiana decreased by 2.0 × 105 km2, mainly in North America. This study will provide a theoretical basis for the control of B. dorsalis (Hendel) with B. bassiana.
Collapse
|
10
|
Analysis of the Humoral Immunal Response Transcriptome of Ectropis obliqua Infected by Beauveria bassiana. INSECTS 2022; 13:insects13030225. [PMID: 35323523 PMCID: PMC8955196 DOI: 10.3390/insects13030225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Ectropis obliqua is a destructive leaf-eating pest that is widely distributed in China’s tea gardens. This pest shows remarkable resistance against multiple insecticides. As an environmentally friendly entomopathogen, Beauveria bassiana has been widely used to prevent agricultural pest infestations. However, the molecular mechanism of B. bassiana against E. obliqua remains unclear. We firstly isolated and identified a highly virulent B. bassiana strain. Using a transcriptome, we analyzed the differences of immune gene expression levels in fat bodies and hemocytes of E. obliqua that were infected by the B. bassiana, which provide molecular insights into the insect–pathogen interaction. Abstract Ectropis obliqua is a destructive masticatory pest in China’s tea gardens. Beauveria bassiana as microbial insecticides can effectively control E. obliqua larvae; however, the immune response of this insect infected by B. bassiana are largely unknown. Here, after isolating a highly virulent strain of B. bassiana from E. obliqua, the changes in gene expression among different tissues, including hemocytes and fat bodies, of E. obliqua larvae infected by the entomopathogen were investigated using transcriptome sequencing. A total of 5877 co-expressed differentially expressed genes (DEGs) were identified in hemocytes and fat bodies, of which 5826 were up-regulated in hemocytes and 5784 were up-regulated in fat bodies. We identified 249 immunity-related genes, including pattern recognition receptors, immune effectors, signal modulators, and members of immune pathways. A quantitative real-time PCR analysis confirmed that several pattern recognition receptors were upregulated in hemocytes and fat bodies; however, others were downregulated. The investigated immune effectors (ATT and PPO-1) were suppressed. The results showed that there were tissue differences in the expression of immune genes. This study provides a large number of immunity-related gene sequences from E. obliqua after being infected by B. bassiana, furthering the understanding of the molecular mechanisms of E. obliqua defenses against B. bassiana.
Collapse
|
11
|
Yang J, Xu X, Lin S, Chen S, Lin G, Song Q, Bai J, You M, Xie M. Profiling of MicroRNAs in Midguts of Plutella xylostella Provides Novel Insights Into the Bacillus thuringiensis Resistance. Front Genet 2021; 12:739849. [PMID: 34567090 PMCID: PMC8455949 DOI: 10.3389/fgene.2021.739849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
The diamondback moth (DBM), Plutella xylostella, one of the most destructive lepidopteran pests worldwide, has developed field resistance to Bacillus thuringiensis (Bt) Cry toxins. Although miRNAs have been reported to be involved in insect resistance to multiple insecticides, our understanding of their roles in mediating Bt resistance is limited. In this study, we constructed small RNA libraries from midguts of the Cry1Ac-resistant (Cry1S1000) strain and the Cry1Ac-susceptible strain (G88) using a high-throughput sequencing analysis. A total of 437 (76 known and 361 novel miRNAs) were identified, among which 178 miRNAs were classified into 91 miRNA families. Transcripts per million analysis revealed 12 differentially expressed miRNAs between the Cry1S1000 and G88 strains. Specifically, nine miRNAs were down-regulated and three up-regulated in the Cry1S1000 strain compared to the G88 strain. Next, we predicted the potential target genes of these differentially expressed miRNAs and carried out GO and KEGG pathway analyses. We found that the cellular process, metabolism process, membrane and the catalytic activity were the most enriched GO terms and the Hippo, MAPK signaling pathway might be involved in Bt resistance of DBM. In addition, the expression patterns of these miRNAs and their target genes were determined by RT-qPCR, showing that partial miRNAs negatively while others positively correlate with their corresponding target genes. Subsequently, novel-miR-240, one of the differentially expressed miRNAs with inverse correlation with its target genes, was confirmed to interact with Px017590 and Px007885 using dual luciferase reporter assays. Our study highlights the characteristics of differentially expressed miRNAs in midguts of the Cry1S1000 and G88 strains, paving the way for further investigation of miRNA roles in mediating Bt resistance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiyao Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|