1
|
Chen L, Huang Q, Luo Y, Zhou Y, Tong T, Chen Y, Bai Q, Lu C, Li Z. MiR-184 targeting FOXO1 regulates host-cell oxidative stress induced by Chlamydia psittaci via the Wnt/β-catenin signaling pathway. Infect Immun 2023; 91:e0033723. [PMID: 37815369 PMCID: PMC10652854 DOI: 10.1128/iai.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/11/2023] Open
Abstract
Chlamydia psittaci is a human pathogen that causes atypical pneumonia after zoonotic transmission. We confirmed that C. psittaci infection induces oxidative stress in human bronchial epithelial (HBEs) cells and explored how this is regulated through miR-184 and the Wnt/β-catenin signaling pathway. miR-184 mimic, miR-184 inhibitor, FOXO1 siRNA, or negative control sequence was transfected into HBE cells cultured in serum-free medium using Lipofectamine 2000. Then, prior to the cells were infected with C. psittaci 6BC, and the cells were treated with or without 30 µM Wnt/β-catenin inhibitor ICG-001. Quantification of reactive oxygen species, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione was carried out according to the manufacturer's protocol using a corresponding assay kit. The outcome of both protein and gene was measured by western blotting or real-time fluorescence quantitative PCR. In C. psittaci-infected HBE cells, miR-184 was upregulated, while one of its target genes, FOXO1, was downregulated. ROS and MDA levels increased, while SOD and GSH contents decreased after C. psittaci infection. When miR-184 expression was downregulated, the level of oxidative stress caused by C. psittaci infection was reduced, and the Wnt/β-catenin signaling pathway was inhibited. The opposite results were seen when miR-184 mimic was used. Transfecting with FOXO1 siRNA reversed the effect of miR-184 inhibitor. Moreover, when the Wnt/β-catenin-specific inhibitor ICG-001 was used, the level of oxidative stress induced by C. psittaci infection was significantly suppressed. miR-184 can target FOXO1 to promote oxidative stress in HBE cells following C. psittaci infection by activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lili Chen
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiaoling Huang
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchen Luo
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - You Zhou
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Tong
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuyu Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinqin Bai
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Wang Z, Chen C, Lu H, Wang L, Gao L, Zhang J, Zhu C, Du F, Cui L, Tan Y. Case report: Clinical characteristics of two cases of pneumonia caused with different strains of Chlamydia psittaci. Front Cell Infect Microbiol 2023; 13:1086454. [PMID: 36798086 PMCID: PMC9927004 DOI: 10.3389/fcimb.2023.1086454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Background With the development of metagenomic sequencing technologies, more and more cases of pneumonia caused with Chlamydia psittaci (C. psittaci) have been reported. However, it remains unknown about the characteristics of patients with pneumonia caused by different strains of C. psittaci. Here, we shared the clinical characteristics of two cases of pneumonia caused with C. psittaci strains SZ18-2 and SZ15 which were rarely identified in humans. Case presentation Case 1: A 69-year-old male farmer who fed ducks presented to hospital for cough, diarrhea and lethargy with the temperature of 39.8°C. Case 2: A 48-year-old male worker who slaughtered ducks was transferred to hospital for high fever, cough, myalgia, diarrhea and loss of appetite. Both patients did not take any protective measures (wearing face masks or gloves) while processing ducks. C. psittaci pneumonia was diagnosed by metagenomic next-generation sequencing and polymerase chain reaction. After treatment with doxycycline and azithromycin individually, they recovered well and discharged from hospital. Through OmpA sequencing, two different strains of SZ18-2 and SZ15 were identified in case 1 and case 2, respectively. Conclusions Patients infected with different strains of C. psittaci may own different clinical manifestations. C. psittaci infection should be suspected when pneumonia appears, accompanied by digestive symptoms and multiple organ dysfunction, especially under the exposure of specific birds.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hu Lu
- Department of Emergency, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Gao
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chi Zhu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China,*Correspondence: Yan Tan, ; Lunbiao Cui,
| | - Yan Tan
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Yan Tan, ; Lunbiao Cui,
| |
Collapse
|
3
|
Chlamydia psittaci Induces Autophagy in Human Bronchial Epithelial Cells via PERK and IRE1α, but Not ATF6 Pathway. Infect Immun 2022; 90:e0007922. [PMID: 35435728 DOI: 10.1128/iai.00079-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chlamydia psittaci is an important pathogen that causes chronic and atypical pneumonia in humans. Autophagy and the unfolded protein response (UPR) are important mechanisms for regulating the growth of infectious parasitic pathogens in living cells. Here, we explored whether C. psittaci infection induced autophagy via the UPR and the effect of these cellular responses on the survival and replication of C. psittaci in human bronchial epithelial cells (HBEs). Not only were the numbers of autophagosomes and the expression of LC3-II and Beclin1 increased following C. psittaci infection of HBEs, but also the expression of p62 (also called sequestosome-1) was downregulated. Moreover, after C. psittaci infection, the UPR and UPR sensors PERK/eIF2α and IRE1α/XBP1 were activated, but not the ATF6 pathway. When either Bip siRNA was used to block normal initiation of the UPR, or activation of the PERK and IER1α pathways was blocked with specific inhibitors GSK2606414 and 4μ8C, the level of autophagy caused by C. psittaci infection was significantly inhibited. Furthermore, blocking activation of the UPR and associated pathways significantly reduced the number of C. psittaci inclusions. Our research suggests that the UPR, via the PERK and IRE1α, but not ATF6 signaling pathways, regulates HBE-cell autophagy induced by C. psittaci infection and the replication of C. psittaci.
Collapse
|