1
|
Zhao C, Liu P, Lin X, Wan C, Liao K, Guo P, Deng J, Wu Z, Peng Y, Huang J, Chen Y. The type VI secretion system as a potential predictor of subsequent bloodstream infection of carbapenem-resistant Klebsiella pneumoniae strains on intestinal colonization. Infection 2025:10.1007/s15010-024-02456-x. [PMID: 39899211 DOI: 10.1007/s15010-024-02456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The type VI secretion system (T6SS) has been recognized as a novel virulence factor in Klebsiella pneumoniae. This study investigated the occurrence of T6SS genes in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains during intestinal colonization and evaluated their effect on the development of bloodstream infections. METHODS The study encompassed 2,385 patients admitted to the intensive care unit (ICU) and subjected to routine screening for intestinal colonization with CRKP. PFGE was employed on CRKP strains isolated from both the patients' intestine and blood cultures, confirming their genetic similarity. PCR was employed to detect the presence of carbapenemase genes, T6SS genes, and virulence genes. Quantitative real-time PCR was conducted to assess the expression levels of the core genes associated with the T6SS. The correlation between T6SS expression and sBSI was further investigated. RESULTS Approximately 10% (238/2385) of ICU patients tested positive for CRKP colonization. Among patients who tested positive, 10.1% (24/238) developed CRKP-sBSI. Patients carrying T6SS-positive CRKP isolates were more commonly linked to a history of invasive procedures, antibiotic use, and immunosuppression (P < 0.05), and were strongly associated with 28-day mortality (P < 0.001). It indicated that T6SS-positive CRKP strains exhibited a higher prevalence of virulence genes, such as rmpA and iucA, compared to T6SS-negative ones (P < 0.001). Compared to the strains isolated from simple colonization group, there was a significant increase in the mRNA expression of both hcp and vgrG genes (P < 0.05) of strains from the sBSI group, suggesting the key genes of the T6SS may play a significant role in the occurrence and progression of sBSI caused by CRKP. CONCLUSION The presence of the T6SS in a CRKP strain from intestinal colonization can serve as a promising predictive marker for sBSI. Conducting screenings for CRKP in patients' intestinal flora and monitoring T6SS carriage can improve the prevention and management of CRKP bloodstream infections.
Collapse
Affiliation(s)
- Chenfeng Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Pingjuan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoshu Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chenyu Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiankai Deng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhongwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yaqin Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Junqi Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Liu W, Li M, Cao S, Ishaq HM, Zhao H, Yang F, Liu L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect Drug Resist 2023; 16:6911-6922. [PMID: 37928603 PMCID: PMC10624183 DOI: 10.2147/idr.s426657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria communicate with their surroundings through diverse secretory systems, and the recently discovered Type VI Secretion System (T6SS) has gained significant attention. Klebsiella pneumoniae (K. pneumoniae), an opportunistic pathogen known for causing severe infections in both hospital and animal settings, possesses this intriguing T6SS. This system equips K. pneumoniae with a formidable armory of protein-based weaponry, enabling the delivery of toxins into neighboring cells, thus granting a substantial competitive advantage. Remarkably, the T6SS has also been associated with K. pneumoniae's ability to form biofilms and acquire resistance against antibiotics. However, the precise effects of the T6SS on K. pneumoniae's functions remain inadequately studied, despite research efforts to understand the intricacies of these mechanisms. This comprehensive review aims to provide an overview of the current knowledge regarding the biological functions and regulatory mechanisms of the T6SS in K. pneumoniae.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Min Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shiwen Cao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
4
|
Wang H, Guo Y, Liu Z, Chang Z. The Type VI Secretion System Contributes to the Invasiveness of Liver Abscess Caused by Klebsiella pneumoniae. J Infect Dis 2023; 228:1127-1136. [PMID: 37208895 DOI: 10.1093/infdis/jiad166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae liver abscess (KPLA) with extrahepatic migratory infections is defined as invasive KPLA (IKPLA). The type VI secretion system (T6SS) is involved in the pathogenesis of KPLA. We hypothesized that T6SS plays a role in IKPLA. METHODS 16S ribosomal RNA gene sequencing was performed on abscess samples. Polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) was used to validate the expression difference of T6SS hallmark genes. In vitro and in vivo experiments were performed to identify the pathogenic feature of T6SS. RESULTS PICRUSt2 predicted that the T6SS-related genes were notably enriched in the IKPLA group. PCR detection of T6SS hallmark genes (hcp, vgrG, and icmF) showed that 197 (81.1%) were T6SS-positive strains. The T6SS-positive strain detection rate in the IKPLA group was higher than in the KPLA group (97.1% vs 78.4%; P < .05). RT-PCR showed that the hcp expression level was markedly increased in IKPLA isolates (P < .05). The T6SS-positive isolates showed higher survival against serum and neutrophil killing (all P < .05). The T6SS-positive K pneumoniae-infected mice had a shorter survival time, higher mortality, and an increased interleukin 6 expression in the liver and lungs (all P < .05). CONCLUSIONS T6SS is an essential virulence factor for K pneumoniae and contributes to IKPLA.
Collapse
Affiliation(s)
- Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yawen Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Hu YY, Chen S, Zhang YD, Lu QW, Wang F, Ren A, Liu CX. Value of T6SS Core Gene hcp in Acinetobacter baumannii Respiratory Tract Infection. Indian J Microbiol 2023; 63:291-298. [PMID: 37781009 PMCID: PMC10533764 DOI: 10.1007/s12088-023-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 10/03/2023] Open
Abstract
Hospital-acquired pneumonia caused by Acinetobacter baumannii is a major healthcare burden. Type VI Secretion System (T6SS) contributes to both virulence and drug resistance in this bacteria. This study aims to investigate the diagnostic value of hemolysin co-regulated protein (Hcp) gene in A. baumannii pneumonia and further explore the effect of hcp on clinical, pathogenicity and drug resistance. 53 clinical A. baumannii strains from patients' respiratory tract at a teaching hospital were included in this study. Real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hcp. Recombinant Hcp expression plasmids (pET-28a(+)-hcp) were constructed and his-tagged Hcp were purified to stimulate Tohoku Hospital Pediatrics-1 (THP-1) macrophages. Nuclear Factor Kappa B p65 (NF-κBp65) and Interleukin 8 (IL-8) were detected by qRT-PCR. Antimicrobial susceptibility testing (AST) were examined by an automated instrument system. Hcp gene had 92.6% sensitivity and 75% specificity for distinguishing invasive or colonizing A. baumannii from the respiratory tract. His-tagged Hcp induced NF-κBp65 and IL-8 at gene level in THP-1 macrophages. Additional, high hcp expression isolates showed higher rate of antimicrobial agent exposure (< 30 days) of carbapenems, antibiotic combination therapy and multiple or extensive drug-resistant (MDR/XDR) and exhibited higher resistance rate to clinical commonly-used antimicrobial agents. Hcp gene could serve as a novel diagnostic biomarker to distinguish A. baumannii respiratory tract infection from colonization and participate in eliciting inflammatory responses in vitro. T6SS/hcp may play a role in the development of carbapenem-resistant A. baumannii (CRAB), multiple or extensive drug-resistant A. baumannii (MDRAB/XDRAB). Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01083-8.
Collapse
Affiliation(s)
- Yin-yin Hu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Shuo Chen
- Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Ya-dong Zhang
- Department of Breast Surgery, Nan yang Second General Hospital, Nanyang, 473000 Henan Province China
| | - Qing-wen Lu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Fei Wang
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Aijuan Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Cai-xia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
6
|
Yang M, Zhou X, Bao Y, Zhang Y, Liu B, Gan L, Tao W, Tuo J, Gong H. Comprehensive Genomic Analysis Reveals Extensive Diversity of Type I and Type IV Secretion Systems in Klebsiella pneumoniae. Curr Microbiol 2023; 80:270. [PMID: 37402963 DOI: 10.1007/s00284-023-03362-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
The diversity and distribution of secretion systems in Klebsiella pneumoniae are unclear. In this study, the six common secretion systems (T1SS-T6SS) were comprehensively investigated in the genomes of 952 K. pneumoniae strains. T1SS, T2SS, type T subtype of T4SS, T5SS, and subtype T6SSi of T6SS were found. The findings indicated fewer types of secretion systems in K. pneumoniae than reported in Enterobacteriaceae, such as Escherichia coli. One conserved T2SS, one conserved T5SS, and two conserved T6SS were detected in more than 90% of the strains. In contrast, the strains displayed extensive diversity of T1SS and T4SS. Notably, T1SS and T4SS were enriched in the hypervirulent and classical multidrug resistance pathotypes of K. pneumoniae, respectively. The results expand the epidemiological knowledge of the virulence and transmissibility of pathogenic K. pneumoniae and contribute to identify the potential strains for safe applications.
Collapse
Affiliation(s)
- Menglei Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiaoqin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yangyang Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Boya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Luxi Gan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Weihua Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jinyou Tuo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
7
|
Liu P, Yang A, Tang B, Wang Z, Jian Z, Liu Y, Wang J, Zhong B, Yan Q, Liu W. Molecular epidemiology and clinical characteristics of the type VI secretion system in Klebsiella pneumoniae causing abscesses. Front Microbiol 2023; 14:1181701. [PMID: 37266024 PMCID: PMC10230222 DOI: 10.3389/fmicb.2023.1181701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Purpose The type VI system (T6SS) has the potential to be a new virulence factor for hypervirulent Klebsiella pneumoniae (hvKp) strains. This study aimed to characterize the molecular and clinical features of T6SS-positive and T6SS-negative K. pneumoniae isolates that cause abscesses. Patients and methods A total of 169 non-duplicate K. pneumoniae strains were isolated from patients with abscesses in a tertiary hospital in China from January 2018 to June 2022, and clinical data were collected. For all isolates, capsular serotypes, T6SS genes, virulence, and drug resistance genes, antimicrobial susceptibility testing, and biofilm formation assays were assessed. Multilocus sequence typing was used to analyze the genotypes of hvKp. T6SS-positive hvKp, T6SS-negative hvKp, T6SS-positive cKP, and T6SS-negative cKP (n = 4 strains for each group) were chosen for the in vivo Galleria mellonella infection model and in vitro competition experiments to further explore the microbiological characteristics of T6SS-positive K. pneumoniae isolates. Results The positive detection rate for T6SS was 36.1%. The rates of hvKp, seven virulence genes, K1 capsular serotype, and ST23 in T6SS-positive strains were all higher than those in T6SS-negative strains (p < 0.05). Multivariate logistic regression analysis indicated that the carriage of aerobactin (OR 0.01) and wcaG (OR 33.53) were independent risk factors for T6SS-positive strains (p < 0.05). The T6SS-positive strains had a stronger biofilm-forming ability than T6SS-negative strains (p < 0.05). The T6SS-positive and T6SS-negative strains showed no significant differences in competitive ability (p = 0.06). In the in vivo G. mellonella infection model, the T6SS(+)/hvKP group had the worst prognosis. Except for cefazolin and tegacyclin, T6SS-positive isolates displayed a lower rate of antimicrobial resistance to other drugs (p < 0.05). The T6SS-positive isolates were more likely to be acquired from community infections (p < 0.05). Conclusion Klebsiella pneumoniae isolates causing abscesses have a high prevalence of T6SS genes. T6SS-positive K. pneumoniae isolates are associated with virulence, and the T6SS genes may be involved in the hvKp virulence mechanism.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Awen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
8
|
Role of Klebsiella pneumoniae Type VI secretion system (T6SS) in long-term gastrointestinal colonization. Sci Rep 2022; 12:16968. [PMID: 36216848 PMCID: PMC9550808 DOI: 10.1038/s41598-022-21396-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Type VI secretion systems (T6SS), recently described in hypervirulent K. pneumoniae (hvKp) strains, are involved in bacterial warfare but their role in classical clinical strains (cKp) has been little investigated. In silico analysis indicated the presence of T6SS clusters (from zero to four), irrespective of the strains origin or virulence, with a high prevalence in the K. pneumoniae species (98%). In the strain CH1157, two T6SS-apparented pathogenicity islands were detected, T6SS-1 and -2, harboring a phospholipase-encoding gene (tle1) and a potential new effector-encoding gene named tke (Type VI Klebsiella effector). Tle1 expression in Escherichia coli periplasm affected cell membrane permeability. T6SS-1 isogenic mutants colonized the highest gastrointestinal tract of mice less efficiently than their parental strain, at long term. Comparative analysis of faecal 16S sequences indicated that T6SS-1 impaired the microbiota richness and its resilience capacity. Oscillospiraceae family members could be specific competitors for the long-term gut establishment of K. pneumoniae.
Collapse
|
9
|
Diversity and distribution of Type VI Secretion System gene clusters in bacterial plasmids. Sci Rep 2022; 12:8249. [PMID: 35581398 PMCID: PMC9113992 DOI: 10.1038/s41598-022-12382-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Type VI Secretion System (T6SS) is a nanomolecular apparatus that allows the delivery of effector molecules through the cell envelope of a donor bacterium to prokaryotic and/or eukaryotic cells, playing a role in the bacterial competition, virulence, and host interaction. T6SS is patchily distributed in bacterial genomes, suggesting an association with horizontal gene transfer (HGT). In fact, T6SS gene loci are eventually found within genomic islands (GIs), and there are some reports in plasmids and integrative and conjugative elements (ICEs). The impact that T6SS may have on bacteria fitness and the lack of evidence on its spread mechanism led us to question whether plasmids could represent a key mechanism in the spread of T6SS in bacteria. Therefore, we performed an in-silico analysis to reveal the association between T6SS and plasmids. T6SS was mined on 30,660 plasmids from NCBI based on the presence of at least six T6SS core proteins. T6SS was identified in 330 plasmids, all belonging to the same type (T6SSi), mainly in Proteobacteria (328/330), particularly in Rhizobium and Ralstonia. Interestingly, most genomes carrying T6SS-harboring plasmids did not encode T6SS in their chromosomes, and, in general, chromosomal and plasmid T6SSs did not form separate clades.
Collapse
|