1
|
Tang B, Zhao H, Li J, Liu N, Huang Y, Wang J, Yue M. Detection of clinical Serratia marcescens isolates carrying blaKPC-2 in a hospital in China. Heliyon 2024; 10:e29702. [PMID: 38660286 PMCID: PMC11040119 DOI: 10.1016/j.heliyon.2024.e29702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Serratia marcescens is an opportunistic and nosocomial pathogen found in the intensive care unit (ICU), but its antimicrobial resistance (AMR) is rarely addressed. Here, we reported two blaKPC-2-positive S. marcescens strains, SMBC31 and SMBC50, recovered from the ICU of a hospital in Zhengzhou, China. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while S1-PFGE was employed to demonstrate plasmid size approximation. Complete genome sequences were obtained through Illumina NovaSeq 6000 and Oxford Nanopore Technologies. Both strains exhibit resistance to meropenem and harbor the blaKPC-2 and blaSRT-1 resistance genes. The plasmid pSMBC31-39K in strain SMBC31 and pSMBC50-107K in strain SMBC50 were identified as carrying the blaKPC-2 gene. Notably, both of these plasmids were successfully transferred to Escherichia coli strain J53. Phylogenetic analysis based on plasmid sequences revealed that pSMBC31-39K exhibited high homology with plasmids found in Aeromonas caviae, Citrobacter sp., and Pseudomonas aeruginosa, while pSMBC50-107K showed significant similarity to those of E. coli and Klebsiella pneumoniae. Notably, the coexistence of blaKPC-2 and blaSRT-1 was observed in all 94 KPC-2-producing S. marcescens strains by mining all genomes available under the GenBank database, which were mainly isolated from hospitalized patients. The emergence of multidrug-resistant S. marcescens poses significant challenges in treating clinical infections, highlighting the need for increased surveillance of this pathogen.
Collapse
Affiliation(s)
- Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haoyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Na Liu
- Translational Medicine Research Center, Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Yuting Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Min Yue
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| |
Collapse
|
2
|
Huang XH, She MT, Zhang YH, Liu YF, Zhong DX, Zhang YH, Zheng JX, Sun N, Wong WL, Lu YJ. Novel quinoline-based derivatives as the PqsR inhibitor against Pseudomonas aeruginosa PAO1. J Appl Microbiol 2022; 133:2167-2181. [PMID: 35490292 DOI: 10.1111/jam.15601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
AIMS The emerging of drug resistant Pseudomonas aeruginosa is a critical challenge and renders an urgent action to discover innovative antimicrobial interventions. One of these interventions is to disrupt the pseudomonas quinolone signal (pqs) quorum sensing (QS) system, which governs multiple virulence traits and biofilm formation. This study aimed to investigate the QS inhibitory activity of a series of new PqsR inhibitors bearing a quinoline scaffold against Ps. aeruginosa. METHODS AND RESULTS The results showed that compound 1 suppressed the expression of QS-related genes and showed the best inhibitory activity to the pqs system of wild-type Ps. aeruginosa PAO1 with an IC50 of 20.22 μmol l-1 . The virulence factors including pyocyanin, total protease, elastase, and rhamnolipid were significantly suppressed in a concentration-dependent manner with the compound. In addition, 1 in combination with tetracycline inhibited synergistically the bacterial growth and suppressed the biofilm formation of PAO1. The molecular docking studies also suggested that 1 could potentially interact with the ligand-binding domain of the Lys-R type transcriptional regulator PqsR as a competitive antagonist. CONCLUSIONS The quinoline-based derivatives were found to interrupt the quorum sensing system via the pqs pathway and thus the production of virulence factors was inhibited and the antimicrobial susceptibility of Ps. aeruginosa was enhanced. SIGNIFICANCE AND IMPACT OF STUDY The study showed that the quinoline-based derivatives could be used as an anti-virulence agent for treating Ps. aeruginosa infections.
Collapse
Affiliation(s)
- Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Hang Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Fu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Dong-Xiao Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Han Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Ning Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, P. R. China.,Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan, P. R. China
| |
Collapse
|
3
|
Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 2022; 13:1114199. [PMID: 36762094 PMCID: PMC9905436 DOI: 10.3389/fmicb.2022.1114199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feifeng Zhong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gongyong Peng, ✉
| |
Collapse
|