1
|
Patel SK, Vikram A, Pathania D, Chugh R, Gaur P, Prajapati G, Kotian SY, Satyanarayana GNV, Yadav AK, Upadhyay AK, Ray RS, Dwivedi A. Allergic Potential & Molecular Mechanism of Skin Sensitization of Cinnamaldehyde Under Environmental UVB Exposure. CHEMOSPHERE 2024:143508. [PMID: 39384131 DOI: 10.1016/j.chemosphere.2024.143508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fragrance, a key ingredient in cosmetics, often triggers skin allergy causes rashes, itching, dryness, and cracked or scaly skin. Cinnamaldehyde (CA), derived from the bark of the cinnamon tree, used as a fragrance and is a moderate skin sensitizer. CA exhibits strong UVB absorption, its allergic potential and the molecular mechanisms underlying skin sensitization under UVB exposure remain largely unexplored. To investigate the allergic potential and molecular mechanisms of CA-induced skin sensitization under ambient UVB radiation, we employed various alternative in-silico, in-chemico and in-vitro tools. CA under ambient UVB isomerizes from trans to cis CA after 1hr of exposure. Furthermore, DPRA assay and docking with simulation studies demonstrated the enhanced allergic potential of cis-CA. Additionally, our study evaluated intracellular ROS levels and the expression of Nrf2, Catalase, and MMP-2, and 9 in KeratinoSens cells, showing significant upregulation under UVB exposure in the presence of CA. Moreover, our findings indicate that CA activates THP-1 cells co-stimulatory surface marker (CD86) via the activation of intracellular ROS, phagocytosis, and genes of the TLR4 pathway. These insights into the mechanisms uncovered by our study are crucial for managing triggers of allergic skin diseases caused by fragrance use and concurrent exposure to environmental UVB/sunlight.
Collapse
Affiliation(s)
- Sunil Kumar Patel
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Apeksha Vikram
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Diksha Pathania
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Rashi Chugh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004, Punjab, India
| | - Prakriti Gaur
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Gaurav Prajapati
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
| | - Sumana Y Kotian
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004, Punjab, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cheng S, Zheng S, Zhong M, Gyawali KR, Pan W, Xu M, Huang H, Huang X. Current situation of sporotrichosis in China. Future Microbiol 2024; 19:1097-1106. [PMID: 39056139 PMCID: PMC11323943 DOI: 10.1080/17460913.2024.2352283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 07/28/2024] Open
Abstract
Sporotrichosis, a mycosis resulting from cutaneous or subcutaneous infection with the dimorphic fungus Sporothrix, has been reported in China, particularly in the northeast region. In this review, we conducted a thorough examination of the recent advancements in sporotrichosis in China, encompassing aspects such as etiology, epidemiology, pathogenesis, clinical manifestations, diagnosis and treatment strategies. Within the Chinese context, fixed cutaneous sporotrichosis represents the prevailing clinical manifestation. Fungal culture stands as the gold standard for diagnosing sporotrichosis, while polymerase chain reaction techniques can enhance both the specificity and sensitivity of diagnosis. Besides conventional systemic antifungal agents, alternative modalities such as Chinese herbal medicines, photodynamic therapy and laser therapy show potential efficacy against sporotrichosis.
Collapse
Affiliation(s)
- Shuqiong Cheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siqi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meizhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Keshav Raj Gyawali
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Pan
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Meinian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaiqiu Huang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3
|
de Miranda LHM, Santiago MDA, Frankenfeld J, dos Reis EG, Menezes RC, Pereira SA, Gremião IDF, Hofmann-Lehmann R, Conceição-Silva F. Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis. J Fungi (Basel) 2024; 10:422. [PMID: 38921408 PMCID: PMC11205038 DOI: 10.3390/jof10060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the central role of cats in the transmission and amplification of Sporothrix, studies regarding immune response in feline sporotrichosis are scarce. In cats with sporotrichosis, neutrophil-rich lesions are usually associated to good general condition and lower fungal burden. However, the role of neutrophils in anti-Sporothrix immunity has been little explored in cats. Thus, the aim of this study was to evaluate the neutrophil oxidative burst in the blood of cats with sporotrichosis. Cats with sporotrichosis included in the study were treated with itraconazole (ITZ) alone or combined with potassium iodide (KI). The neutrophil oxidative burst was evaluated through a flow-cytometry-based assay using dihydrorhodamine 123 (background) and stimulation with Zymosan and heat-killed Sporothrix yeasts. The cure rate was 50.0% in cats under treatment with ITZ monotherapy and 90.9% in cats treated with ITZ + KI (p = 0.014), endorsing the combination therapy as an excellent alternative for the treatment of feline sporotrichosis. Higher percentages of Sporothrix-stimulated neutrophils were associated with good general condition (p = 0.003). Higher percentages of Sporothrix- (p = 0.05) and Zymosan-activated (p = 0.014) neutrophils before and early in the treatment were related to clinical cure in ITZ-treated cats. The correlation between oxidative burst and successful use of KI could not be properly assessed given the low number of failures (n = 2) in this treatment group. Nasal mucosa involvement, typically linked to treatment failure, was related to lower percentages of activated neutrophils in the background at the treatment outcome (p = 0.02). Our results suggest a beneficial role of neutrophils in feline sporotrichosis and a positive correlation between neutrophil activation and the cure process in ITZ-treated cats.
Collapse
Affiliation(s)
- Luisa Helena Monteiro de Miranda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Marta de Almeida Santiago
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| | - Julia Frankenfeld
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Erica Guerino dos Reis
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Rodrigo Caldas Menezes
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| |
Collapse
|
4
|
Zhong J, Le W, Li X, Su X. Evaluating the efficacy of different antibiotics against Neisseria gonorrhoeae: a pharmacokinetic/pharmacodynamic analysis using Monte Carlo simulation. BMC Infect Dis 2024; 24:104. [PMID: 38238655 PMCID: PMC10797866 DOI: 10.1186/s12879-023-08938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND With the widespread use of antibiotics, antimicrobial resistance in Neisseria gonorrhoeae is worsening. The objective of this study was to evaluate the efficacy changes of seven antibiotics in the treatment of N. gonorrhoeae by using Monte Carlo simulation combined with pharmacokinetics/pharmacodynamics/ (PK/PD). METHODS The minimum inhibitory concentration (MIC) of antibiotics against clinical isolates from 2013 to 2020 in Nanjing, China, was determined by agar dilution method. The probability of target attainment (PTA) was estimated at each MIC value and the cumulative fraction of response (CFR) was calculated to evaluate the efficacy of these regimens. RESULTS All dosage regimens of seven antibiotics achieved PTAs ≥ 90% for MIC ≤ 0.06 µg/ml. But when the MIC was increased to 1 µg/ml, PTAs at each MIC value exceeded 90% only for ceftriaxone 1,000 mg and 2,000 mg, zoliflodacin 2,000 mg and 3,000 mg. Among them, the CFR values of each dosing regimen against N. gonorrhoeae only for ceftriaxone, cefixime and zoliflodacin were ≥ 90% in Nanjing from 2013 to 2020. CONCLUSIONS Cephalosporins are still the first-line drugs in the treatment of gonorrhea. However, the elevated MIC values of cephalosporins can lead to decline in clinical efficacy of the conventional dose regimens, and increasing the dose of ceftriaxone to 1,000 mg-2,000 mg may improve the efficacy. In addition, zoliflodacin is possible to be a potential therapeutic agent in the future.
Collapse
Affiliation(s)
- Jiaojiao Zhong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
| | - Wenjing Le
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
| | - Xuechun Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaohong Su
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China.
| |
Collapse
|
5
|
Liu Z, Li SS, Zhang GY, Lv S, Wang S, Li FQ. Whole transcriptome sequencing for revealing the pathogenesis of sporotrichosis caused by Sporothrix globosa. Sci Rep 2024; 14:359. [PMID: 38172590 PMCID: PMC10764346 DOI: 10.1038/s41598-023-50728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to investigate the molecular mechanism of sporotrichosis and identify possible novel therapeutic targets. Total RNA was extracted from skin lesion samples from sporotrichosis patients and used to construct a long-chain RNA transcriptome library and miRNA transcriptome library for whole transcriptome sequencing. The differentially expressed genes (DEGs) between the groups were identified, and then Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed based on the DEGs. An lncRNA-miRNA-mRNA ceRNA network was constructed. The expressions of JAK/STAT pathway-related proteins were detected in the patient and control tissues using RT-qPCR and Western blot analysis. Enrichment analysis showed that the DEGs were mainly enriched in various infectious diseases and immune response-related signaling pathways. Competing endogenous RNA network analysis was performed and identified the hub lncRNAs, miRNAs, and mRNAs. Compared with the control group, the mRNA expressions of SOCS3, IL-6, and JAK3 were significantly upregulated, while the expression of STAT3 did not change significantly. Also, the protein expressions of SOCS3, IL-6, JAK3, and STAT3, as well as phosphorylated JAK3 and STAT3, were significantly upregulated. We identified 671 lncRNA DEGs, 3281 mRNA DEGs, and 214 miRNA DEGs to be involved in Sporothrix globosa infection. The study findings suggest that the JAK/STAT pathway may be a therapeutic target for sporotrichosis.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Su-Shan Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Gui-Yun Zhang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| | - Fu-Qiu Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
6
|
Hatinguais R, Leaves I, Brown GD, Brown AJP, Brock M, Peres da Silva R. CRISPR-based tools for targeted genetic manipulation in pathogenic Sporothrix species. Microbiol Spectr 2023; 11:e0507822. [PMID: 37707447 PMCID: PMC10581184 DOI: 10.1128/spectrum.05078-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Sporothrix brasiliensis is an emerging fungal pathogen frequently associated with zoonotic transmission of sporotrichosis by contaminated cats. Within 25 years, the disease has spread not only throughout Brazil but now to neighboring countries in Latin America. Thermo-dimorphism, melanin, glycans, adhesins, and secreted vesicles have been associated with the ability of Sporothrix species to cause disease in the mammalian host. Although certain virulence factors have been proposed as potential determinants for sporotrichosis, the scarcity of molecular tools for performing reverse genetics in Sporothrix has significantly impeded the dissection of mechanisms underlying the disease. Here, we demonstrate that PEG-mediated protoplast transformation is a powerful method for heterologous gene expression in S. brasiliensis, S. schenckii, and S. chilensis. Combined with CRISPR/Cas9 gene editing, this transformation protocol enabled the deletion of the putative DHN-melanin synthase gene pks1, which is a proposed virulence factor of Sporothrix species. To improve in locus integration of deletion constructs, we deleted the KU80 homolog that is critical for non-homologous end-joining DNA repair. The use of Δku80 strains from S. brasiliensis enhanced homologous-directed repair during transformation resulting in increased targeted gene deletion in combination with CRISPR/Cas9. In conclusion, our CRISPR/Cas9-based transformation protocol provides an efficient tool for targeted gene manipulation in Sporothrix species. IMPORTANCE Sporotrichosis caused by Sporothrix brasiliensis is a disease that requires long periods of treatment and is rapidly spreading across Latin America. The virulence of this fungus and the surge of atypical and more severe presentations of the disease raise the need for an understanding of the molecular mechanisms underlying sporotrichosis, as well as the development of better diagnostics and antifungal therapies. By developing molecular tools for accurate genetic manipulation in Sporothrix, this study addresses the paucity of reliable and reproducible tools for stable genetic engineering of Sporothrix species, which has represented a major obstacle for studying the virulence determinants and their roles in the establishment of sporotrichosis.
Collapse
Affiliation(s)
- Remi Hatinguais
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Zhong J, Zhang J, Ma J, Cai W, Li X, Zhang J. Role of Dectin-1 in immune response of macrophages induced by Fonsecaea monophora wild strain and melanin-deficient mutant strain. Mycology 2023; 15:45-56. [PMID: 38558842 PMCID: PMC10976994 DOI: 10.1080/21501203.2023.2249010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/13/2023] [Indexed: 04/04/2024] Open
Abstract
Chromoblastomycosis is a chronic granulomatous subcutaneous fungal disease caused mainly by Fonsecaea monophora in southern China. Melanin is an important virulence factor in wild strain (Mel+), and the strains lack of the polyketide synthase gene is a melanin-deficient mutant strain (Mel-). We investigated the effect of melanin in F. monophora on Dectin-1 receptor-mediated immune responses in macrophages. Conidia and tiny hyphae of Mel+ and Mel- were co-cultured with THP-1 macrophages expressing normal or low levels of Dectin-1. Compare the killing rate, phagocytosis rate, and expression levels of the inflammatory cytokines tumour necrosis factor-α, interleukin-1β, interleukin-6, and nitric oxide in each group. The results showed that the killing rate, phagocytosis rate, and pro-inflammatory factor levels of Mel+ infected macrophages with normal expression of Dectin-1 were lower than those of Mel-. And the knockdown of Dectin-1 inhibited the phagocytic rate, killing rate, and proinflammatory factor expression in macrophages infected with Mel+ and Mel-. And there was no significant difference in the above indexes between Mel+ and Mel- groups in Dectin-1 knockdown macrophages. In summary, the study reveals that melanin of F. monophora inhibits the immune response effect of the host by hindering its binding to Dectin-1 on the surface of macrophage, which may lead to persistent fungal infections.
Collapse
Affiliation(s)
- Jiaojiao Zhong
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jing Zhang
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianchi Ma
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenying Cai
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junmin Zhang
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Gómez-Gaviria M, Martínez-Duncker I, García-Carnero LC, Mora-Montes HM. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect Drug Resist 2023; 16:4817-4834. [PMID: 37520448 PMCID: PMC10386844 DOI: 10.2147/idr.s419629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background Sporotrichosis is a mycosis frequently caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The cell wall is a species-specific fungal structure with a direct role in activating the host's immune response. The current knowledge about anti-Sporothrix immunity comes from studies using S. schenckii or S. brasiliensis and murine cells. Macrophages and dendritic cells detect and eliminate pathogens, and although the function of these cells links innate with adaptive immunity, little is known about their interaction with Sporothrix spp. Methods S. schenckii, S. brasiliensis, and S. globosa conidia or yeast-like cells were co-incubated with human monocyte-derived macrophages or dendritic cells, and the phagocytosis and cytokine stimulation were assessed. These interactions were also performed in the presence of specific blocking agents of immune receptors or fungal cells with altered walls to analyze the contribution of these molecules to the immune cell-fungus interaction. Results Both types of immune cells phagocytosed S. globosa conidia and yeast-like cells to a greater extent, followed by S. brasiliensis and S. schenckii. Furthermore, when the wall internal components were exposed, the phagocytosis level increased for S. schenckii and S. brasiliensis, in contrast to S. globosa. Thus, the cell wall components have different functions during the interaction with macrophages and dendritic cells. S. globosa stimulated an increased proinflammatory response when compared to the other species. In macrophages, this was a dectin-1-, mannose receptor-, and TLR2-dependent response, but dectin-1- and TLR2-dependent stimulation in dendritic cells. For S. schenckii and S. brasiliensis, cytokine production was dependent on the activation of TLR4, CR3, and DC-SIGN. Conclusion The results of this study indicate that these species are recognized by immune cells differently and that this may depend on both the structure and cell wall organization of the different morphologies.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| |
Collapse
|
9
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Youngchim S. Extracellular vesicles derived from Talaromyces marneffei contain immunogenic compounds and modulate THP-1 macrophage responses. Front Immunol 2023; 14:1192326. [PMID: 37457708 PMCID: PMC10339390 DOI: 10.3389/fimmu.2023.1192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1β, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Guan M, Yao L, Zhen Y, Song Y, Liu X, Liu Y, Chen R, Cui Y, Li S. Sporothrix globosa melanin regulates autophagy via the TLR2 signaling pathway in THP-1 macrophages. PLoS Negl Trop Dis 2023; 17:e0011281. [PMID: 37141335 DOI: 10.1371/journal.pntd.0011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Melanin, an important virulence factor of pathogenic fungi, has been shown to suppress host immune responses in multiple ways. Autophagy is a vital cellular mechanism underlying the host's innate immunity against microbial infections. However, the potential influence of melanin on autophagy has not been explored. We investigated the effect of melanin on autophagy in macrophages, which play a key role in controlling Sporothrix spp. infection, as well as the mechanism of melanin interaction with Toll-like receptor (TLR)-induced pathways. Sporothrix globosa conidia (wild-type and melanin-deficient mutant strains) or yeast cells were co-cultured with THP-1 macrophages to demonstrate that, although S. globosa infection led to the activation of autophagy-related proteins and increased autophagic flux, S. globosa melanin suppressed macrophage autophagy. Incubation with S. globosa conidia also increased the expression levels of reactive oxygen species and multiple proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β and interferon-γ) in macrophages. These effects were attenuated as melanin presented. Furthermore, while S. globosa conidia significantly increased the expression of both TLR2 and TLR4 in macrophages, the knockdown of TLR2, but not TLR4, with small interfering RNA suppressed autophagy. Overall, this study revealed the novel immune defense ability of S. globosa melanin to inhibit macrophage functionality by resisting macrophage autophagy through the regulation of TLR2 expression.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
- Department of Dermatology and Venereology, Zhuhai People's Hospital, Zhuhai, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
García-Carnero LC, Martínez-Duncker I, Gómez-Gaviria M, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Mononuclear Cells. J Fungi (Basel) 2023; 9:448. [PMID: 37108903 PMCID: PMC10146672 DOI: 10.3390/jof9040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Sporotrichosis is a human and animal fungal infection distributed worldwide that is caused by the thermodimorphic species of the Sporothrix pathogenic clade, which includes Sporothrix brasiliensis, Sporothrix schenckii, and Sporothrix globosa. The cell wall composition and the immune response against the Sporothrix species have been studied mainly in S. brasiliensis and S. schenckii, whilst little is known about the S. globosa cell wall and the immune response that its components trigger. Therefore, in this study, we aimed to analyze the cell wall composition of S. globosa in three morphologies (germlings, conidia, and yeast-like cells) and the differences in cytokine production when human peripheral blood mononuclear cells (PBMCs) interact with these morphotypes, using S. schenckii and S. brasiliensis as a comparison. We found that S. globosa conidia and yeast-like cells have a higher cell wall chitin content, while all three morphologies have a higher β-1,3-glucan content, which was found most exposed at the cell surface when compared to S. schenckii and S. brasiliensis. In addition, S. globosa has lower levels of mannose- and rhamnose-based glycoconjugates, as well as of N- and O-linked glycans, indicating that this fungal cell wall has species-specific proportions and organization of its components. When interacting with PBMCs, S. brasiliensis and S. globosa showed a similar cytokine stimulation profile, but with a higher stimulation of IL-10 by S. globosa. Additionally, when the inner cell wall components of S. globosa were exposed at the surface or N- and O-glycans were removed, the cytokine production profile of this species in its three morphotypes did not significantly change, contrasting with the S. schenckii and S. brasiliensis species that showed different cytokine profiles depending on the treatment applied to the walls. In addition, it was found that the anti-inflammatory response stimulated by S. globosa was dependent on the activation of dectin-1, mannose receptor, and TLR2, but not TLR4. All of these results indicate that the cell wall composition and structure of the three Sporothrix species in the three morphologies are different, affecting their interaction with human PBMCs and generating species-specific cytokine profiles.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico;
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (M.G.-G.)
| |
Collapse
|
12
|
Lin P, Zhang J, Xie G, Li J, Guo C, Lin H, Zhang Y. Innate Immune Responses to Sporothrix schenckii: Recognition and Elimination. Mycopathologia 2022; 188:71-86. [PMID: 36329281 DOI: 10.1007/s11046-022-00683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Sporothrix schenckii (S. schenckii), a ubiquitous thermally dimorphic fungus, is the etiological agent of sporotrichosis, affecting immunocompromised and immunocompetent individuals. Despite current antifungal regimens, sporotrichosis results in prolonged treatment and significant mortality rates in the immunosuppressed population. The innate immune system forms the host's first and primary line of defense against S. schenckii, which has a bi-layered cell wall structure. Many components act as pathogen-associated molecular patterns (PAMPs) in pathogen-host interactions. PAMPs are recognized by pattern recognition receptors (PRRs) such as toll-like receptors, C-type lectin receptors, and complement receptors, triggering innate immune cells such as neutrophils, macrophages, and dendritic cells to phagocytize or produce mediators, contributing to S. schenckii elimination. The ultrastructure of S. schenckii and pathogen-host interactions, including PRRs and innate immune cells, are summarized in this review, promoting a better understanding of the innate immune response to S. schenckii and aiding in the development of protective and therapeutic strategies to combat sporotrichosis.
Collapse
Affiliation(s)
- Peng Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junchen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyue Lin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
13
|
García-Carnero LC, Martínez-Álvarez JA. Virulence Factors of Sporothrix schenckii. J Fungi (Basel) 2022; 8:jof8030318. [PMID: 35330320 PMCID: PMC8949611 DOI: 10.3390/jof8030318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis. In this review, we discuss the virulence factors that have been proven to participate in the S. schenckii-host interaction. Among these known factors, we can find cell wall glycoproteins, adhesins, melanin, extracellular vesicles, and dimorphism. Furthermore, the morphological transition of S. schenckii in response to environmental conditions such as pH and temperature represents a means by which the fungus is able to establish mycosis in mammals. One of the key features in the development of sporotrichosis is the adhesion of the fungus to the host extracellular matrix. This event represents the first step to developing the mycosis, which involves adhesins such as the glycoproteins Gp70, Hsp60, and Pap1, which play a key role during the infection. The production of melanin helps the fungus to survive longer in the tissues and to neutralize or diminish many of the host’s attacks, which is why it is also considered a key factor in pathogenesis. Today, the study of human fungal pathogens’ virulence factors is a thriving area of research. Although we know some of the virulence factors in S. schenckii, much remains to be understood about the complex process of sporotrichosis development and the factors involved during the infection.
Collapse
|