1
|
Zhang L, Hong Y, Sun K, Zhao S, Bai Y, Yang S, Tao J, Shi F, Zhan F, Lin L, Qin Z. Passive protection of chicken egg yolk immunoglobulin (IgY) against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109923. [PMID: 39326687 DOI: 10.1016/j.fsi.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
IgY is an immunoglobulin primarily found in the serum and egg yolk of birds, amphibians, and reptiles. Recent years, IgY is considered to have a good application prospect in the immunodiagnostics and passive immunotherapy of aquatic diseases. In this study, we prepared a specific IgY against Streptococcus agalactiae in tilapia after immunizing the hens for 4 times. The result of ELISA detection showed that the IgY titers in water-soluble fraction (WSF) after 6 weeks of immunization reached 1:51200 and last for 4 weeks. Western blot (WB) analysis data showed that the specific IgY could recognize the target band, the specific IgY showed a concentration-dependent inhibitory effect on the growth of S. agalactiae, altered cell wall structure and aggluted of S. agalactiae. The quantitative reverse transcription PCR (qRT-PCR) analysis data suggested that the specific IgY downregulated the expression of pro-inflammatory factors (IL-8, TNF-α), upregulated the anti-inflammatory factors (IL-10, TGF-β). In addition, the histopathological results showed that the specific IgY significantly decreased the pathological manifestations, dramatically improved the survival rates of tilapia in injection, feeding, and immersion experiments. Collectively, our findings demonstrated that the broad potential of specific IgY for the prevention and treatment of S. agalactiae infection in tilapia.
Collapse
Affiliation(s)
- Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Kaihui Sun
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
2
|
Rahim K, Nawaz MN, Almehmadi M, Alsuwat MA, Liu L, Yu C, Khan SS. Public health implications of antibiotic resistance in sewage water: an epidemiological perspective. BIORESOUR BIOPROCESS 2024; 11:91. [PMID: 39340706 PMCID: PMC11438758 DOI: 10.1186/s40643-024-00807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence and rapid spread of antibiotic resistance pose a major threat to global health, attributing to misuse and overuse of antibiotics resulting in antibiotics-resistant bacteria through natural mutation or transfer of resistance genes. A cross-sectional study was carried out, in which a total of 36 samples were systematically collected; of these, 26 were derived from the wastewater efflux and 10 from the receiving waters at several critical junctures along the Sutlej River. Herein, this study elucidated elevated levels of antibiotic resistance among bacterial isolates sourced from urban wastewater. Escherichia coli (E. coli) was the highest at 90% among the isolates, followed by Klebsiella pneumoniae (K. pneumoniae) at 58%, Pseudomonas aeruginosa (P. aeruginosa) at 55%, and Salmonella spp. at 53%. Many antibiotics were found to be more resistant including Ciproflaxacin, Co-Trimaxazole, Ampicillin and Tetracycline. Several antibiotic-resistance genes were found in isolated bacterial spp., such as Aminoglycosides (aadA), Sulfonamides (Sul1, Sul3), Tetracyclines (Tet (A/B/D)) and Cephalosporins (Bla_CTM X) at 41%, 35%, 29% and 12% respectively. Furthermore, the development of innovative wastewater treatment models and surveillance programs are crucial to counteract the dissemination of antibiotic resistance. To investigate the genetic determinants of antibiotic resistance, molecular analysis was performed, including DNA isolation, PCR amplification, and sequence analysis. The study helps investigate a diverse range of ARBs and ARGs in wastewater, which highlights the need of better laws for antibiotic usage and wastewater treatment processes. This investigation also stresses on regular monitoring of ARBs and ARGs in sewage wastewater. Through proactive interventions and sustained scientific inquiry, we can strive toward preserving environmental integrity and public health for successive generations.
Collapse
Affiliation(s)
- Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Muhammad Naveed Nawaz
- Department of Biological Sciences and Technology, China University of Geosciences, Wuhan, China
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Paankhao N, Sangsawang A, Kantha P, Paankhao S, Promsee K, Soontara C, Kongsriprapan S, Srisapoome P, Kumwan B, Meachasompop P, Phrompanya P, Buncharoen W, Uchuwittayakul A. Antioxidant and antibacterial efficiency of the ethanolic leaf extract of Kratom (Mitragyna speciosa (Korth.) Havil) and its effects on growth, health, and disease resistance against Edwardsiella tarda infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109771. [PMID: 39025168 DOI: 10.1016/j.fsi.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The research examined the impact of an ethanolic extract from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil.) on the growth, antioxidant capacity, immune-related gene expression, and resistance to disease caused by Edwardsiella tarda in Nile tilapia (Oreochromis niloticus). The findings revealed that the extract had the important phytochemical content in the extract included total phenolics content, total flavonoids content, vitamin C, and total antioxidant capacity and 5.42 % of the crude extract was mitragynine. The extract demonstrated antioxidant activity, as evidenced by its IC50 values against ABTS and DPPH radicals and its ferric reducing power in vitro. Moreover, the MIC-IC50 value of 0.625 mg/mL indicated that the growth of the bacteria was reduced by approximately 50 %, and the MBC was 2.50 mg/mL against E. tarda. Furthermore, the orally administered Kratom leaf extract to fingerling tilapia for 8 weeks exhibited a noticeable increase in oxidative stress, as demonstrated by the increase in MDA production in the 10 and 25 g/kg groups. It also exhibited an increase in acetylcholinesterase (AChE) activity in muscle tissue at the 50 g/kg group. However, when administered at a feeding rate of 5-10 g/kg feed, the extract showed an increase in the expression of immune-related genes (IL1, IL6, IL8, NF-kB, IFNγ, TNFα, Mx, CC-chemokine, CD4, TCRβ, MHC-IIβ, IgM, IgT, IgD) and enhanced resistance to E. tarda infection in fish. Conversely, administering the extract at 25-50 g/kg feed resulted in contrasting effects, suppressing and reducing the observed parameters. Nevertheless, feeding the extract at all concentrations for 8 weeks did not produce any changes in the histology or systemic functioning of the liver and intestines, as indicated by blood biochemistry. These findings suggest that the ethanolic leaf extract from Kratom has the potential to be used as a substitute for antibiotics in the management of bacterial infections in Nile tilapia culture, with a recommended dosage of 5-10 g/kg feed/day for a maximum of 8 weeks.
Collapse
Affiliation(s)
- Natthapong Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phunsin Kantha
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Suwinai Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Kittipong Promsee
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Chayanit Soontara
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Sopanat Kongsriprapan
- Faculty of Science at Sriracha, Kasetsart University, Si Racha Campus, Si Racha, Chonburi, 20230, Thailand.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Benchawan Kumwan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pakapon Meachasompop
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phornphan Phrompanya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wararut Buncharoen
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Anurak Uchuwittayakul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Li S, Xiang J, Zeng Y, Peng X, Li H. Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. Microb Biotechnol 2024; 17:e14379. [PMID: 38085112 PMCID: PMC10832521 DOI: 10.1111/1751-7915.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/10/2023] [Indexed: 02/03/2024] Open
Abstract
Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.
Collapse
Affiliation(s)
- Shao‐hua Li
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Jiao Xiang
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Ying‐yue Zeng
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Xuan‐xian Peng
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Guangdong Litai Pharmaceutical Co. Ltd.JieyangGuangdongChina
| | - Hui Li
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
5
|
Xu X, Yin P, Zhang Y, Yang H. The immune response of fairy shrimp Branchinella kugenumaensis against Edwardsiella anguillarum infections by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109260. [PMID: 38043874 DOI: 10.1016/j.fsi.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Elgendy MY, Ali SE, Abbas WT, Algammal AM, Abdelsalam M. The role of marine pollution on the emergence of fish bacterial diseases. CHEMOSPHERE 2023; 344:140366. [PMID: 37806325 DOI: 10.1016/j.chemosphere.2023.140366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine pollution and bacterial disease outbreaks are two closely related dilemmas that impact marine fish production from fisheries and mariculture. Oil, heavy metals, agrochemicals, sewage, medical wastes, plastics, algal blooms, atmospheric pollutants, mariculture-related pollutants, as well as thermal and noise pollution are the most threatening marine pollutants. The release of these pollutants into the marine aquatic environment leads to significant ecological degradation and a range of non-infectious disorders in fish. Marine pollutants trigger numerous fish bacterial diseases by increasing microbial multiplication in the aquatic environment and suppressing fish immune defense mechanisms. The greater part of these microorganisms is naturally occurring in the aquatic environment. Most disease outbreaks are caused by opportunistic bacterial agents that attack stressed fish. Some infections are more serious and occur in the absence of environmental stressors. Gram-negative bacteria are the most frequent causes of these epizootics, while gram-positive bacterial agents rank second on the critical pathogens list. Vibrio spp., Photobacterium damselae subsp. Piscicida, Tenacibaculum maritimum, Edwardsiella spp., Streptococcus spp., Renibacterium salmoninarum, Pseudomonas spp., Aeromonas spp., and Mycobacterium spp. Are the most dangerous pathogens that attack fish in polluted marine aquatic environments. Effective management strategies and stringent regulations are required to prevent or mitigate the impacts of marine pollutants on aquatic animal health. This review will increase stakeholder awareness about marine pollutants and their impacts on aquatic animal health. It will support competent authorities in developing effective management strategies to mitigate marine pollution, promote the sustainability of commercial marine fisheries, and protect aquatic animal health.
Collapse
Affiliation(s)
- Mamdouh Y Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Shimaa E Ali
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt; WorldFish, Abbassa, Sharkia, Egypt
| | - Wafaa T Abbas
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Sherif AH, Elkasef M, Mahfouz ME, Kasem EA. Impacts of dietary zinc oxide nanoparticles on the growth and immunity of Nile tilapia could be ameliorated using Nigella sativa oil. J Trace Elem Med Biol 2023; 79:127265. [PMID: 37478799 DOI: 10.1016/j.jtemb.2023.127265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Zinc nanoparticles are documented to be harmful to fish because their accumulation in fish bring about many irreversible changes in their health. Nigella sativa and its oil have been endorsed in aquaculture to improve fish health. METHODS Two hundred seventy experimental fish (113 ± 5 g body weight) were divided into 6 groups G1-6; control fish fed a diet without any treatment (G1), 0.3% of NSO (G2), 0.5% of NSO (G3), ZnO NPs (40 mg/kg diet) (G4), 0.3% of NSO and ZnO NPs (40 mg/kg diet) (G5), 0.5% of NSO and ZnO NPs (40 mg/kg diet) (G6), the trial lasted for six weeks. RESULTS Growth performance was enhanced in fish received diets containing NSO, final weight (FW), weight gain (WG), daily weight gain (DWG), and relative growth rate (RGR) were significantly increased with lower food conversion ratios (FCR) compared to the control. The hepatic glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased in response to ZnO NPs stress and only 0.5% NSO supplementation could ameliorate such increment. The immune-related genes [interleukin1-beta (IL-1β), tumor necrosis factor-beta (TNF-β), transforming growth factor-beta 2 (TGF-β2) and C-type lysozyme] as well as growth-related gene [insulin-like growth factor 1 (IGF1)] in liver showed an upregulation in fish fed with NSO diets. Administration of ZnO NPs lowered the resistance of Oreochromis niloticus against bacterial infection with Aeromonas hydrophila and NSO could enhance the immunity in the highest tested concentration (0.5%) (G6). CONCLUSIONS The obtained results implied that NSO could enhance the oxidative and immune status of O. niloticus which could compensate ZnO NPs stress as well as experimental infection of a virulent strain of A. hydrophila. Our results revealed that NSO might increase fish growth and immunity only at a high dose (0.5%).
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt.
| | - Mariam Elkasef
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas A Kasem
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
8
|
Goh KW, Abdul Kari Z, Wee W, Zakaria NNA, Rahman MM, Kabir MA, Abdul Hamid NK, Tahiluddin AB, Kamarudin AS, Téllez–Isaías G, Wei LS. Exploring the roles of phytobiotics in relieving the impacts of Edwardsiella tarda infection on fish: a mini-review. Front Vet Sci 2023; 10:1149514. [PMID: 37476823 PMCID: PMC10355809 DOI: 10.3389/fvets.2023.1149514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.
Collapse
Affiliation(s)
- Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nik Nur Azwanida Zakaria
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Department of Agro-Based Industry, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | | | | | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines
| | - Ahmad Syazni Kamarudin
- School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut, Terengganu, Malaysia
| | | | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
9
|
Cyathocotylidae spp and motile aeromonads co-infections in farmed Nile tilapia (Oreochromis niloticus) causing mass mortality. Microb Pathog 2023; 174:105897. [PMID: 36528326 DOI: 10.1016/j.micpath.2022.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Motile aeromonads, and Cyathocotylidaespp.co-infections were identified in farmed Nile tilapia(Oreochromis niloticus) which suffering from mortalities. Moribund fish showed signs of septicemia, skin irritations, and respiratory distress. A total of 150 O. niloticus specimens showing signs of disease were collected from the affected earthmen ponds and examined. Bacteriological examination of fish samples revealed infections with motile aeromonads species. Phenotypic characteristics and phylogenetic analysis of gyrB gene sequences of aeromonads isolates identified them as Aeromonas hydrophila (12.6%), A.sobria (12.6%), and A. caviae (30.4%). Aeromonads strains harbored some virulence genes: Aer (78.62%); Hyl (60.86%); laf-A (52.17%); and Act (47.82%). The antibiogram of aeromonads showed high resistance against tetracycline (73.9%), and gentamycin (65.2%), while a high sensitivity was noticed to ciprofloxacin (82.6%),and trimethoprim/sulfamethoxazole (60.86%). Parasitological examination of fish revealed the presence of Cyathocotylidae spp. encysted metacercaria (EMC). High levels of interleukin 6 (IL-6) and cluster of differentiation 4 (CD4) were noticed in fish with parasitic and bacterial co-infection compared to those with a single infection or non-infected. Experimentally infected fish with Aeromonas spp. showed septicemic signs similar to that noticed in naturally infected tilapia with variable cumulative mortality. The study is one of the earlier reports identifying as Cyathocotylidae spp., and motile aeromonads co-infections, and their link with the exaggerated tilapia mortality which will be of value for incorporating these pathogens in the necessary management strategies to protect fish health.
Collapse
|