1
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Xu L, Wang T, Xu Y, Jiang C. Investigation of the pharmacological mechanisms of Shenfu injection in acute pancreatitis through network pharmacology and experimental validation. Heliyon 2024; 10:e37491. [PMID: 39309824 PMCID: PMC11415655 DOI: 10.1016/j.heliyon.2024.e37491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background Shenfu Injection (SFI) has emerged as a prevalent therapeutic intervention in clinical practice for the management of acute pancreatitis (AP). The purpose of this research was to investigate and validate the potential mechanisms of SFI in the treatment of AP through network pharmacology. Methods Network pharmacology was adopted to investigate the potential targets and mechanisms of SFI in the treatment of AP. Molecular docking was employed to evaluate the binding affinity between active components and targets. Single-cell transcriptome analysis was conducted to explore the cell types associated with SFI treatment in AP. In vitro and in vivo models of AP were induced by caerulein. The histopathological changes were observed by HE staining. Cell apoptosis was detected using flow cytometry and Tunel staining. Cell viability was assessed using CCK-8 assay. Western blot and ELISA were used to detect the protein expression and inflammatory cytokines, respectively. Results A total of 104 SFI active components were obtained, of which 29 targeted 76 genes. After intersecting with 3370 AP-related genes, 42 SFI treatment AP potential targets were identified. Enrichment analysis revealed that these targets were associated with cell apoptosis, necroptosis, and multiple signal transduction pathways, such as p53, IL-17 and TNF signal pathways, etc. Molecular docking demonstrated that the active components of SFI had good binding affinity with the corresponding targets and the binding ability of NGF and aromadendrene was the strongest. Bioinformatics analysis revealed that SFI treatment in AP is associated with various cell types, including acinar cells, endothelial cells, T cells, dendritic cells, ductal cells, and mesenchymal cells. Furthermore, in vitro experiments demonstrated that SFI induces acinar cell apoptosis in a dose-dependent manner, accompanied by increased expression of cleaved-caspase3/caspase3 and cleaved-caspase8/caspase8 proteins, and inhibition of inflammatory cytokine (TNF-ɑ, IL-1β, and PTGS2) expression. In vivo experiments demonstrated that SFI improved histopathological alterations, reduces inflammation, and promotes apoptosis and the expression of cleaved-casp3 and cleaved-casp8 in AP rats. Conclusions This study elucidated the multi-component, multi-target, and multi-cellular characteristics of SFI in the treatment of AP, and confirmed its mechanism of promoting acinar cell apoptosis.
Collapse
Affiliation(s)
- Liming Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Tianpeng Wang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Chenghang Jiang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| |
Collapse
|
3
|
Yang X, Xu H, Liang X, Yuan G, Gao Q, Tan X, Yang Y, Xiao Y, Huang Z, Dai W, Liu X. Exploring the casual association between gut microbiome, circulating inflammatory cytokines and chronic pancreatitis: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e37959. [PMID: 38701270 PMCID: PMC11062735 DOI: 10.1097/md.0000000000037959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
It has been established that gut dysbiosis contributed to the pathogenesis of digestive disorders. We aimed to explore the causal relationships between intestinal microbiota, circulating inflammatory cytokines and chronic pancreatitis (CP). Summary statistics of genome-wide association studies (GWAS) of intestinal microbiome was retrieved from the MiBioGen study and the GWAS data of 91 circulating inflammatory cytokines and CP were obtained from the GWAS catalog. The 2-sample bidirectional Mendelian randomization (MR) analysis was performed between gut microbiota, circulating inflammatory cytokines and CP, in which the inverse variance weighted (IVW) method was regarded as the primary analysis approach. To prove the reliability of the causal estimations, multiple sensitivity analyses were utilized. IVW results revealed that genetically predicted 2 genera, including Sellimonas and Eubacteriumventriosumgroup, and plasm C-C motif chemokine 23 (CCL23) level were positively associated with CP risk, while genus Escherichia Shigella, Eubacteriumruminantiumgroup and Prevotella9, and plasma Caspase 8, Adenosine Deaminase (ADA), and SIR2-like protein 2 (SIRT2) level, demonstrated an ameliorative effect on CP. Leave-one-out analysis confirmed the robustness of the aforementioned causal effects and no significant horizontal pleiotropy or heterogeneity of the instrumental variables was detected. However, no association was found from the identified genera to the CP-related circulating inflammatory cytokines. Besides, the reverse MR analysis demonstrated no causal relationship from CP to the identified genera and circulating inflammatory cytokines. Taken together, our comprehensive analyses offer evidence in favor of the estimated causal connections from the 5 genus-level microbial taxa and 4 circulating inflammatory cytokines to CP risk, which may help to reveal the underlying pathogenesis of CP.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Guojia Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Qiaoping Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoyu Tan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yongguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yi Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Zhanren Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
Zhou R, Wu Q, Yang Z, Cai Y, Wang D, Wu D. The Role of the Gut Microbiome in the Development of Acute Pancreatitis. Int J Mol Sci 2024; 25:1159. [PMID: 38256232 PMCID: PMC10816839 DOI: 10.3390/ijms25021159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
With the explosion research on the gut microbiome in the recent years, much insight has been accumulated in comprehending the crosstalk between the gut microbiota community and host health. Acute pancreatitis (AP) is one of the gastrointestinal diseases associated with significant morbidity and subsequent mortality. Studies have elucidated that gut microbiota are engaged in the pathological process of AP. Herein, we summarize the major roles of the gut microbiome in the development of AP. We then portray the association between dysbiosis of the gut microbiota and the severity of AP. Finally, we illustrate the promises and challenges that arise when seeking to incorporate the microbiome in acute pancreatitis treatment.
Collapse
Affiliation(s)
- Ruilin Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Qingyang Wu
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Zihan Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Yanna Cai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Duan Wang
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Huang S, Li F, Quan C, Jin D. Intestinal flora: a potential pathogenesis mechanism and treatment strategy for type 1 diabetes mellitus. Gut Microbes 2024; 16:2423024. [PMID: 39520706 PMCID: PMC11552262 DOI: 10.1080/19490976.2024.2423024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by destruction of pancreatic β-cells, leading to insulin deficiency and hyperglycemia, and its incidence is increasing year by year. The pathogenesis of T1DM is complex, mainly including genetic and environmental factors. Intestinal flora is the largest microbial community in the human body and plays a very important role in human health and disease. In recent years, more and more studies have shown that intestinal flora and its metabolites, as an environmental factor, regulate the development of T1DM through various mechanisms such as altering the intestinal mucosal barrier, influencing insulin secretion and body immune regulation. Intestinal flora transplantation, probiotic supplementation, and other approaches to modulate the intestinal flora appear to be potential therapeutic approaches for T1DM. This article reviews the dysbiosis of the intestinal flora in T1DM, the potential mechanisms by which the intestinal flora affects T1DM, as well as discusses potential approaches to treating T1DM by intervening in the intestinal flora.
Collapse
Affiliation(s)
- Shengnan Huang
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Fangfang Li
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Chunhua Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, China
| | - Dan Jin
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
6
|
Wang K, Qin X, Ran T, Pan Y, Hong Y, Wang J, Zhang X, Shen X, Liu C, Lu X, Chen Y, Bai Y, Zhang Y, Zhou C, Zou D. Causal link between gut microbiota and four types of pancreatitis: a genetic association and bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1290202. [PMID: 38075894 PMCID: PMC10702359 DOI: 10.3389/fmicb.2023.1290202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND A number of recent observational studies have indicated a correlation between the constitution of gut microbiota and the incidence of pancreatitis. Notwithstanding, observational studies are unreliable for inferring causality because of their susceptibility to confounding, bias, and reverse causality, the causal relationship between specific gut microbiota and pancreatitis is still unclear. Therefore, our study aimed to investigate the causal relationship between gut microbiota and four types of pancreatitis. METHODS An investigative undertaking encompassing a genome-wide association study (GWAS) comprising 18,340 participants was undertaken with the aim of discerning genetic instrumental variables that exhibit associations with gut microbiota, The aggregated statistical data pertaining to acute pancreatitis (AP), alcohol-induced AP (AAP), chronic pancreatitis (CP), and alcohol-induced CP (ACP) were acquired from the FinnGen Consortium. The two-sample bidirectional Mendelian randomization (MR) approach was utilized. Utilizing the Inverse-Variance Weighted (IVW) technique as the cornerstone of our primary analysis. The Bonferroni analysis was used to correct for multiple testing, In addition, a number of sensitivity analysis methodologies, comprising the MR-Egger intercept test, the Cochran's Q test, MR polymorphism residual and outlier (MR-PRESSO) test, and the leave-one-out test, were performed to evaluate the robustness of our findings. RESULTS A total of 28 intestinal microflora were ascertained to exhibit significant associations with diverse outcomes of pancreatitis. Among them, Class Melainabacteria (OR = 1.801, 95% CI: 1.288-2.519, p = 0.008) has a strong causality with ACP after the Bonferroni-corrected test, in order to assess potential reverse causation effects, we used four types of pancreatitis as the exposure variable and scrutinized its impact on gut microbiota as the outcome variable, this analysis revealed associations between pancreatitis and 30 distinct types of gut microflora. The implementation of Cochran's Q test revealed a lack of substantial heterogeneity among the various single nucleotide polymorphisms (SNP). CONCLUSION Our first systematic Mendelian randomization analysis provides evidence that multiple gut microbiota taxa may be causally associated with four types of pancreatitis disease. This discovery may contribute significant biomarkers conducive to the preliminary, non-invasive identification of Pancreatitis. Additionally, it could present viable targets for potential therapeutic interventions in the disease's treatment.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xianzheng Qin
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yundi Pan
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Hong
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianda Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - XiaoNan Shen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxiao Liu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinchen Lu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaya Bai
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|