1
|
Fan F, Chen G, Deng S, Wei L. Proteomic analysis of meropenem-induced outer membrane vesicles released by carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2024; 12:e0291723. [PMID: 38236023 PMCID: PMC10846168 DOI: 10.1128/spectrum.02917-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important multidrug resistance (MDR) pathogen that threatens human health and is the main source of hospital-acquired infection. Outer membrane vesicles (OMVs) are extracellular vesicles derived from Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. They also contribute to cellular communication to nearby or distant recipient cells and influence their functions and phenotypes. In this study, we sought to understand the mechanism of bacterial response to meropenem pressure and explore the relationship between pathogenic proteins and the high pathogenicity of bacteria. We performed whole-genome PacBio sequencing on a clinical CRKP strain, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Thousands of vesicle proteins have been identified in mass spectrometry-based high-throughput proteomics analyses of K. pneumoniae OMVs. Protein functionality analysis showed that the OMVs were predominantly involved in metabolic, intracellular compartments, nucleic acid binding, survival, defense, and antibiotic resistance, such as Chromosome partition protein MukB, 3-methyl-2-oxobutanoate hydroxymethyltransferase, methionine-tRNA ligase, Heat shock protein 60 family chaperone GroEL, and Gamma-glutamyl phosphate reductase. Additionally, a protein-protein interaction network demonstrated that OMVs from meropenem-treated K. pneumoniae showed the highest connectivity in DNA polymerase I, phenylalanine-tRNA ligase beta subunit, DNA-directed RNA polymerase subunit beta, methionine-tRNA ligase, DNA-directed RNA polymerase subunit beta, and DNA-directed RNA polymerase subunit alpha. The OMVs proteome expression profile indicates increased secretion of stress proteins released from meropenem-treated K. pneumoniae, which provides clues for revealing the biogenesis and pathophysiological functions of Gram-negative bacteria OMVs. The significant differentially expressed proteins identified in this study are of great significance for exploring effective control strategies for CRKP infection.IMPORTANCEMeropenem is one of the main antibiotics used in the clinical treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP). This study demonstrated that some important metabolic changes occurred in meropenem-induced CRKP-outer membrane vesicles (OMVs), The OMVs proteome expression profile indicates increased secretion of stress proteins released from meropenem-induced Klebsiella pneumoniae. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by CRKP, especially under antibiotic stress.
Collapse
Affiliation(s)
- Fangfang Fan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Guangzhang Chen
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Siqian Deng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| |
Collapse
|
2
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|