1
|
Huang R, Tang C, Zhao Y, Liu L, Chen J, Shi Z, Yan Z. Unveiling the Biochar-Respiratory Growth of Methanosarcina acetivorans Involving Extracellular Polymeric Substances. MICROBIAL ECOLOGY 2023; 86:2970-2980. [PMID: 37684545 DOI: 10.1007/s00248-023-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Biochar can be applied to diverse natural and engineered anaerobic systems. Biochar plays biogeochemical roles during its production, storage, and environmental dynamics, one of which is related to the global methane flux governed by methanotrophs and methanogens. Our understanding of relevant mechanisms is currently limited to the roles of biochar in methanotrophic growth, but less is known about the roles of biochar in methanogenic growth. Here, we demonstrated that biochar enhanced the methanogenic growth of a model methanogen, Methanosarcina acetivorans, and the role of biochar as an electron acceptor during methanogenic growth was confirmed, which is referred to as biochar-respiratory growth. The biochar-respiratory growth of M. acetivorans promoted the secretion of extracellular polymeric substances (EPS) with augmented electron transfer capabilities, and the removal of EPS significantly attenuated extracellular electron transfer. Identification and quantification of prosthetic cofactors for EPS suggest an important role of flavin and F420 in extracellular electron transfer. Transcriptomic analysis provided additional insights into the biochar-respiratory growth of M. acetivorans, showing that there was a positive response in transcriptional regulation to the favorable growth environment provided by biochar, which stimulated global methanogenesis. Our results shed more light on the in situ roles of biochar in the ecophysiology of methanogens in diverse anaerobic environments.
Collapse
Affiliation(s)
- Rui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Chuyan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Yameng Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Lina Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Jiazhe Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhirui Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int J Mol Sci 2022; 23:521. [PMID: 35008947 PMCID: PMC8745595 DOI: 10.3390/ijms23010521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.
Collapse
Affiliation(s)
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA;
- Clare Hall College, University of Cambridge, Cambridge CB3 9AL, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Singhal N, Garg A, Singh N, Gulati P, Kumar M, Goel M. Efficacy of signal peptide predictors in identifying signal peptides in the experimental secretome of Picrophilous torridus, a thermoacidophilic archaeon. PLoS One 2021; 16:e0255826. [PMID: 34358261 PMCID: PMC8345856 DOI: 10.1371/journal.pone.0255826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Secretory proteins are important for microbial adaptation and survival in a particular environment. Till date, experimental secretomes have been reported for a few archaea. In this study, we have identified the experimental secretome of Picrophilous torridus and evaluated the efficacy of various signal peptide predictors (SPPs) in identifying signal peptides (SPs) in its experimental secretome. Liquid chromatography mass spectrometric (LC MS) analysis was performed for three independent P. torridus secretome samples and only those proteins which were common in the three experiments were selected for further analysis. Thus, 30 proteins were finally included in this study. Of these, 10 proteins were identified as hypothetical/uncharacterized proteins. Gene Ontology, KEGG and STRING analyses revealed that majority of the sercreted proteins and/or their interacting partners were involved in different metabolic pathways. Also, a few proteins like malate dehydrogenase (Q6L0C3) were multi-functional involved in different metabolic pathways like carbon metabolism, microbial metabolism in diverse environments, biosynthesis of antibiotics, etc. Multi-functionality of the secreted proteins reflects an important aspect of thermoacidophilic adaptation of P. torridus which has the smallest genome (1.5 Mbp) among nonparasitic aerobic microbes. SPPs like, PRED-SIGNAL, SignalP 5.0, PRED-TAT and LipoP 1.0 identified SPs in only a few secreted proteins. This suggests that either these SPPs were insufficient, or N-terminal SPs were absent in majority of the secreted proteins, or there might be alternative mechanisms of protein translocation in P. torridus.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Nirpendra Singh
- Regional Center for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Pallavi Gulati
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Leon DR, Ytterberg AJ, Boontheung P, Kim U, Loo JA, Gunsalus RP, Ogorzalek Loo RR. Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1. Front Microbiol 2015; 6:149. [PMID: 25798134 PMCID: PMC4350412 DOI: 10.3389/fmicb.2015.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to "mine" information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.
Collapse
Affiliation(s)
- Deborah R Leon
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - A Jimmy Ytterberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Pinmanee Boontheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Unmi Kim
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA ; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Robert P Gunsalus
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
5
|
Schmid G, Mathiesen G, Arntzen MO, Eijsink VGH, Thomm M. Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2013; 17:921-30. [PMID: 23979514 PMCID: PMC3824201 DOI: 10.1007/s00792-013-0574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/30/2013] [Indexed: 11/24/2022]
Abstract
Although Pyrococcus furiosus is one of the best studied hyperthermophilic archaea, to date no experimental investigation of the extent of protein secretion has been performed. We describe experimental verification of the extracellular proteome of P. furiosus grown on starch. LC-MS/MS-based analysis of culture supernatants led to the identification of 58 proteins. Fifteen of these proteins had a putative N-terminal signal peptide (SP), tagging the proteins for translocation across the membrane. The detected proteins with predicted SPs and known function were almost exclusively involved in important extracellular functions, like substrate degradation or transport. Most of the 43 proteins without predicted N-terminal signal sequences are known to have intracellular functions, mainly (70 %) related to intracellular metabolism. In silico analyses indicated that the genome of P. furiosus encodes 145 proteins with N-terminal SPs, including 21 putative lipoproteins and 17 with a class III peptide. From these we identified 15 (10 %; 7 SPI, 3 SPIII and 5 lipoproteins) under the specific growth conditions of this study. The putative lipoprotein signal peptides have a unique sequence motif, distinct from the motifs in bacteria and other archaeal orders.
Collapse
Affiliation(s)
- G. Schmid
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| | - G. Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. O. Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | - V. G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| |
Collapse
|
6
|
A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 2012; 3:163-70. [PMID: 22410786 DOI: 10.1007/s13238-012-2023-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.
Collapse
|
7
|
Identification of the major expressed S-layer and cell surface-layer-related proteins in the model methanogenic archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:873589. [PMID: 22666082 PMCID: PMC3361143 DOI: 10.1155/2012/873589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/02/2012] [Indexed: 11/22/2022]
Abstract
Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene.
Collapse
|
8
|
Khrustalev VV, Barkovsky EV. Study of completed archaeal genomes and proteomes: hypothesis of strong mutational AT pressure existed in their common predecessor. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 8:22-32. [PMID: 20451159 PMCID: PMC5054120 DOI: 10.1016/s1672-0229(10)60003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of completely sequenced archaeal genomes has been sufficient for a large-scale bioinformatic study. We have conducted analyses for each coding region from 36 archaeal genomes using the original CGS algorithm by calculating the total GC content (G+C), GC content in first, second and third codon positions as well as in fourfold and twofold degenerated sites from third codon positions, levels of arginine codon usage (Arg2: AGA/G; Arg4: CGX), levels of amino acid usage and the entropy of amino acid content distribution. In archaeal genomes with strong GC pressure, arginine is coded preferably by GC-rich Arg4 codons, whereas in most of archaeal genomes with G+C<0.6, arginine is coded preferably by AT-rich Arg2 codons. In the genome of Haloquadratum walsbyi, which is closely related to GC-rich archaea, GC content has decreased mostly in third codon positions, while Arg4>>Arg2 bias still persists. Proteomes of archaeal species carry characteristic amino acid biases: levels of isoleucine and lysine are elevated, while levels of alanine, histidine, glutamine and cytosine are relatively decreased. Numerous genomic and proteomic biases observed can be explained by the hypothesis of previously existed strong mutational AT pressure in the common predecessor of all archaea.
Collapse
Affiliation(s)
- Vladislav V Khrustalev
- Department of General Chemistry, Belarussian State Medical University, Minsk 220116, Belarus.
| | | |
Collapse
|
9
|
Shaping the archaeal cell envelope. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:608243. [PMID: 20671907 PMCID: PMC2910488 DOI: 10.1155/2010/608243] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 05/29/2010] [Indexed: 12/12/2022]
Abstract
Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane.
Collapse
|
10
|
Ellen AF, Albers SV, Driessen AJM. Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 2009; 14:87-98. [PMID: 19957093 PMCID: PMC2797410 DOI: 10.1007/s00792-009-0290-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 01/01/2023]
Abstract
Although a large number of potentially secreted proteins can be predicted on the basis of genomic distribution of signal sequence-bearing proteins, protein secretion in Archaea has barely been studied. A proteomic inventory and comparison of the growth medium proteins in three hyperthermoacidophiles, i.e., Sulfolobus solfataricus, S. acidocaldarius and S. tokodaii, indicates that only few proteins are freely secreted into the growth medium and that the majority originates from cell envelope bound forms. In S. acidocaldarius both cell-associated and secreted alpha-amylase activities are detected. Inactivation of the amyA gene resulted in a complete loss of activity, suggesting that the same protein is responsible for the a-amylase activity at both locations. It is concluded that protein secretion in Sulfolobus is a limited process, and it is suggested that the S-layer may act as a barrier for the free diffusion of folded proteins into the medium.
Collapse
Affiliation(s)
- Albert F Ellen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
11
|
Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD. J Bacteriol 2009; 191:6732-40. [PMID: 19717585 DOI: 10.1128/jb.00673-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Archaea, the preflagellin peptidase (a type IV prepilin-like peptidase designated FlaK in Methanococcus voltae and Methanococcus maripaludis) is the enzyme that cleaves the N-terminal signal peptide from preflagellins. In methanogens and several other archaeal species, the typical flagellin signal peptide length is 11 to 12 amino acids, while in other archaea preflagellins possess extremely short signal peptides. A systematic approach to address the signal peptide length requirement for preflagellin processing is presented in this study. M. voltae preflagellin FlaB2 proteins with signal peptides 3 to 12 amino acids in length were generated and used as a substrate in an in vitro assay utilizing M. voltae membranes as an enzyme source. Processing by FlaK was observed in FlaB2 proteins containing signal peptides shortened to 5 amino acids; signal peptides 4 or 3 amino acids in length were unprocessed. In the case of Sulfolobus solfataricus, where the preflagellin peptidase PibD has broader substrate specificity, some predicted substrates have predicted signal peptides as short as 3 amino acids. Interestingly, the shorter signal peptides of the various mutant FlaB2 proteins not processed by FlaK were processed by PibD, suggesting that some archaeal preflagellin peptidases are likely adapted toward cleaving shorter signal peptides. The functional complementation of signal peptidase activity by FlaK and PibD in an M. maripaludis DeltaflaK mutant indicated that processing of preflagellins was detected by complementation with either FlaK or PibD, yet only FlaK-complemented cells were flagellated. This suggested that a block in an assembly step subsequent to signal peptide removal occurred in the PibD complementation.
Collapse
|
12
|
Palmieri G, Cannio R, Fiume I, Rossi M, Pocsfalvi G. Outside the unusual cell wall of the hyperthermophilic archaeon Aeropyrum pernix K1. Mol Cell Proteomics 2009; 8:2570-81. [PMID: 19640852 DOI: 10.1074/mcp.m900012-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the extensively studied eukaryal and bacterial protein secretion systems, comparatively less is known about how and which proteins cross the archaeal cell membrane. To identify secreted proteins of the hyperthermophilic archaeon Aeropyrum pernix K1 we used a proteomics approach to analyze the extracellular and cell surface protein fractions. The experimentally obtained data comprising 107 proteins were compared with the in silico predicted secretome. Because of the lack of signal peptide and cellular localization prediction tools specific for archaeal species, programs trained on eukaryotic and/or Gram-positive and Gram-negative bacterial signal peptide data sets were used. PSortB Gram-negative and Gram-positive analysis predicted 21 (1.2% of total ORFs) and 24 (1.4% of total ORFs) secreted proteins, respectively, from the entire A. pernix K1 proteome, 12 of which were experimentally identified in this work. Six additional proteins were predicted to follow non-classical secretion mechanisms using SecP algorithms. According to at least one of the two PSortB predictions, 48 proteins identified in the two fractions possess an unknown localization site. In addition, more than half of the proteins do not contain signal peptides recognized by current prediction programs. This suggests that known mechanisms only partly describe archaeal protein secretion. The most striking characteristic of the secretome was the high number of transport-related proteins identified from the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic, ATPase, small conductance mechanosensitive ion channel (MscS), and dicarboxylate amino acid-cation symporter transporter families. In particular, identification of 21 solute-binding receptors of the ABC superfamily of the 24 predicted in silico confirms that ABC-mediated transport represents the most frequent strategy adopted by A. pernix for solute translocation across the cell membrane.
Collapse
Affiliation(s)
- Gianna Palmieri
- Institute of Protein Biochemistry-National Research Council, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|