1
|
Wang X, Zhao L, Zhang L, Wu Y, Chou M, Wei G. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution. Lett Appl Microbiol 2018; 67:22-31. [PMID: 29696668 DOI: 10.1111/lam.12998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/27/2022]
Abstract
Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. SIGNIFICANCE AND IMPACT OF THE STUDY This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids.
Collapse
Affiliation(s)
- X Wang
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - L Zhao
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - L Zhang
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Y Wu
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - M Chou
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - G Wei
- State Key Laboratory of Crop Stress of Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Wang X, Liu D, Luo Y, Zhao L, Liu Z, Chou M, Wang E, Wei G. Comparative analysis of rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid 2018; 96-97:13-24. [PMID: 29608935 DOI: 10.1016/j.plasmid.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
In the present study, complete genomic sequences retrieved from 57 rhizobial strains that covered four genera including 11 species were analyzed comprehensively. The four types of replicons: chromosomes, chromids, nonsymbiotic plasmids, and symbiotic plasmids were investigated and compared among these strains. Results showed that co-evolution occurred among these four replicons based on the similarities in average nucleotide identity. High correlation coefficient r values were observed between chromosomes and chromids, as well as between chromosomes and nonsymbiotic plasmids. Chromosomes and symbiotic plasmids showed different phylogenetic topology based on their core genes. Population structure analyses were performed to extrapolate the evolutionary histories of the test strains based on their chromosomal and symbiotic plasmid background. This resulted in seven ancestral types for chromosomal genes and three ancestral types for symbiotic plasmid genes. Rhizobial strains containing chromosome genes with ancestral type E tend to contain symbiotic plasmid genes with ancestral type II, while rhizobial strains containing chromosome genes with ancestral type G tend to contain symbiotic plasmid genes with ancestral type III. Seventeen strains associated with different host plant species which harbored the symbiotic genes with ancestral type I, exhibited high genetic diversity. In addition, Fu's test of the symbiotic plasmid genes with ancestral type III had undergone an expansion event, implying the influence of negative selection on these symbiotic plasmid genes.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China.
| |
Collapse
|
3
|
|
4
|
Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, García de Lema MB, Dardanelli MS. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 2015; 173:1-9. [PMID: 25801965 DOI: 10.1016/j.micres.2014.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
The aim of this work was to clarify the mechanism related to plant growth promoting of a bacterial strain (L115) isolated from Arachis hypogaea rhizospheres and the effects of high growth temperature and salinity on phospholipids and fatty acids composition. L115 was isolated from peanut rhizospheres and identified according to the sequence analysis of the 16S rRNA gene. Phenotypic, metabolic and plant growth promoting rhizobacteria (PGPR) characteristics of L115 were tested. Inoculation test in plant growth chamber was performed. In addition, L115 was exposed to a 37 °C and 300 mM NaCl and phospholipids and fatty acid composition were evaluated. L115 strain was identified as Ochrobactrum intermedium and was able to increase the peanut shoot and root length as well as dry weight, indicating a PGPR role by being able to produce indole acetic acid and siderophores and present ACC deaminase activity. In addition, L115 showed tolerance to both high growth temperature and 300 mM NaCl. The most striking change was a decreased percentage of 18:1 fatty acid and an increase in 16:0 and 18:0 fatty acids, under high growth temperature or a combination of increased temperature and salinity. The most important change in phospholipid levels was an increase in phosphatidylcholine biosynthesis in all growth conditions. L115 can promote the growth of peanut and can tolerate high growth temperature and salinity modifying the fatty acid unsaturation degree and increasing phosphatidylcholine levels. This work is the first to report the importance of the genus Ochrobactrum as PGPR on peanut growth as well as on the metabolic behaviour against abiotic stresses that occur in soil. This knowledge will be useful for developing strategies to improve the growth of this bacterium under stress and to enhance its bioprocess for the production of inoculants.
Collapse
Affiliation(s)
- Natalia S Paulucci
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina.
| | - Lucas A Gallarato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Yanina B Reguera
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Julio C Vicario
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Adriana B Cesari
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Mirta B García de Lema
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|