1
|
Mansour E, Abd-Rabou AA, El-Atawy MA, Ahmed HA, El-Farargy AF, Abd El-Mawgoud HK. Induction of breast cancer cell apoptosis by novel thiouracil-fused heterocyclic compounds through boosting of Bax/Bcl-2 ratio and DFT study. Bioorg Chem 2024; 146:107292. [PMID: 38555798 DOI: 10.1016/j.bioorg.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer is a common public health disease causing mortality worldwide. Thus, providing novel chemotherapies that tackle breast cancer is of great interest. In this investigation, novel pyrido[2,3-d]pyrimidine derivatives 3,4,(6a-c),(8a,b),9-20 were synthesized and characterized using a variety of spectrum analyses. The geometric and thermal parameters of the novel thiouracil derivatives 3,4,6a,(8a,b),11,12,17,18, 19 were measured using density functional theory (DFT) via DFT/B3LYP/6-31 + G(d,p) basis set. All synthesized compounds were evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) method using MCF-7 and MDA-MB-231 breast cancerous cells, compound 17 had the maximum anticancer activity against both breast cancerous cells, recording the lowest half-maximal inhibitory concentration (IC50) values (56.712 μg/mL for MCF-7 cells and 48.743 μg/mL for MDA-MB-231 cells). The results were confirmed in terms of the intrinsic mechanism of apoptosis, where compound 17 had the highest percentage in the case of both cancer cells and recorded Bax (Bcl-2 associated X)/Bcl-2 (B-cell lymphoma 2) ratio 17.5 and 96.667 for MCF-7 and MDA-MB-231 cells, while compound 19 came after 17 in the ability for induction of apoptosis, where the Bax/Bcl-2 ratio was 15.789 and 44.273 for both cancerous cells, respectively. Also, compound 11 recorded a high Bax/Bcl-2 ratio for both cells. The safety of the synthesized compounds was applied on normal WI-38 cells, showing minimum cytotoxic effect with undetectable IC50. Compounds 17, 11, and 19 recorded a significant increase of p53 upregulated modulator of apoptosis (PUMA) expression levels in the cancerous cells. The DFT method was also used to establish a connection between the experimentally determined values of the present investigated compounds and their predicted quantum chemical parameters. It was concluded that Compounds 17, 11, and 19 had anti-breast cancer potential through the induction of apoptotic Bax/Bcl-2 and PUMA expression levels.
Collapse
Affiliation(s)
- Eman Mansour
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed A Abd-Rabou
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Sharqia, Egypt
| | - Heba K Abd El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Mukta MM, Hossain MJ, Akter M, Banik B, Mithun MDMZ, Sarwar S, Arefin MS, Islam MR, Islam SN. Cardioprotection of Water Spinach ( Ipomoea aquatica), Wood Apple ( Limonia acidissima) and Linseed ( Linum usitatissimum L.) on Doxorubicin-Induced Cardiotoxicity and Oxidative Stress in Rat Model. Nutr Metab Insights 2023; 16:11786388231212116. [PMID: 38024869 PMCID: PMC10666662 DOI: 10.1177/11786388231212116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the pharmacological efficacy of 3 functional foods (Water spinach, Wood apple, and Linseed) against doxorubicin-induced cardiotoxicity and oxidative stress in rat models. Methods Twenty-five Wistar Albino rats (male and female) were equally classified into 5 groups. Except for the normal control (NC) group, the animals received 2.5 mg/kg doxorubicin (DOX) intra-peritoneal injection at 48 hours intervals to create a dose of 15 mg/kg overall for 14 days. Simply a standard diet was given to the NC and DOX groups. In the 3 treatment groups such as water spinach (DOX + WS), wood apple (DOX + WA), and linseed (DOX + LS), rats were given 14 gm/day/rat fried water spinach, mashed wood apple, roasted linseed, respectively mixed with regular rat diet at 1:1 ratio. Blood and heart samples were collected by sacrificing all the rats on the last of the experiment day (the 15th day). LDH (lactate dehydrogenase), CK-MB (creatine kinase myocardial band), MDA (malondialdehyde), and SOD (superoxide dismutase) were analyzed. Additionally, histopathological analysis was conducted for final observation. Results The functional foods were indicated to lower the serum cardiac biomarkers (LDH and CK-MB) as well as stress marker (MDA) significantly (P < .05) and improved heart function and oxidative stress. However, the change in serum SOD level was noted as statistically insignificant (P > .05). The biochemical outcomes of the food intervention groups were supported by the histological findings found in those groups. Conclusion Consuming the investigated foods containing antioxidant phytochemicals may combat cardiac toxicity and oxidative stress. Nonetheless, thorough investigations and clinical monitoring are required to understand these functional foods' mechanism of action and dose-response effects in treating cardiotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Maisha Majid Mukta
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Mousumi Akter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Badhan Banik
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | | | - Sneha Sarwar
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Saidul Arefin
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Mohakhali, Dhaka, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Xu Z, Tian P. Rethinking Biosynthesis of Aclacinomycin A. Molecules 2023; 28:molecules28062761. [PMID: 36985733 PMCID: PMC10054333 DOI: 10.3390/molecules28062761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Aclacinomycin A (ACM-A) is an anthracycline antitumor agent widely used in clinical practice. The current industrial production of ACM-A relies primarily on chemical synthesis and microbial fermentation. However, chemical synthesis involves multiple reactions which give rise to high production costs and environmental pollution. Microbial fermentation is a sustainable strategy, yet the current fermentation yield is too low to satisfy market demand. Hence, strain improvement is highly desirable, and tremendous endeavors have been made to decipher biosynthesis pathways and modify key enzymes. In this review, we comprehensively describe the reported biosynthesis pathways, key enzymes, and, especially, catalytic mechanisms. In addition, we come up with strategies to uncover unknown enzymes and improve the activities of rate-limiting enzymes. Overall, this review aims to provide valuable insights for complete biosynthesis of ACM-A.
Collapse
|
4
|
Żelechowska-Matysiak K, Wawrowicz K, Wierzbicki M, Budlewski T, Bilewicz A, Majkowska-Pilip A. Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers. Molecules 2023; 28:molecules28062451. [PMID: 36985421 PMCID: PMC10058186 DOI: 10.3390/molecules28062451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Recently, targeted nanoparticles (NPs) have attracted much attention in cancer treatment due to their high potential as carriers for drug delivery. In this article, we present a novel bioconjugate (DOX–AuNPs–Tmab) consisting of gold nanoparticles (AuNPs, 30 nm) attached to chemotherapeutic agent doxorubicin (DOX) and a monoclonal antibody, trastuzumab (Tmab), which exhibited specific binding to HER2 receptors. The size and shape of synthesized AuNPs, as well as their surface modification, were analyzed by the TEM (transmission electron microscopy) and DLS (dynamic light scattering) methods. Biological studies were performed on the SKOV-3 cell line (HER2+) and showed high specificity of binding to the receptors and internalization capabilities, whereas MDA-MB-231 cells (HER2−) did not. Cytotoxicity experiments revealed a decrease in the metabolic activity of cancer cells and surface area reduction of spheroids treated with DOX–AuNPs–Tmab. The bioconjugate induced mainly cell cycle G2/M-phase arrest and late apoptosis. Our results suggest that DOX–AuNPs–Tmab has great potential for targeted therapy of HER2-positive tumors.
Collapse
Affiliation(s)
- Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Tadeusz Budlewski
- Isotope Therapy Department, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
- Isotope Therapy Department, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
- Correspondence:
| |
Collapse
|
5
|
Mohideen FI, Nguyen LH, Richard JD, Ouadhi S, Kwan DH. In Vitro Reconstitution of the dTDP-l-Daunosamine Biosynthetic Pathway Provides Insights into Anthracycline Glycosylation. ACS Chem Biol 2022; 17:3331-3340. [PMID: 34751552 DOI: 10.1021/acschembio.1c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many small molecule natural products are decorated with sugar moieties that are essential for their biological activity. A considerable number of natural product glycosides and their derivatives are clinically important therapeutics. Anthracyclines like daunorubicin and doxorubicin are examples of valuable glycosylated natural products used in medicine as potent anticancer agents. The sugar moiety, l-daunosamine (a highly modified deoxyhexose), plays a key role in the bioactivity of these molecules as evidenced by semisynthetic anthracycline derivatives such as epirubicin, wherein alteration in the configuration of a single stereocenter of the sugar unit generates a chemotherapeutic drug with lower cardiotoxicity. The nucleotide activated sugar donor that provides the l-daunosamine group for attachment to the natural product scaffold in the biosynthesis of these anthracyclines is dTDP-l-daunosamine. In an in vitro system, we have reconstituted the enzymes in the daunorubicin/doxorubicin pathway involved in the biosynthesis of dTDP-l-daunosamine. Through the study of the enzymatic steps in this reconstituted pathway, we have gained several insights into the assembly of this precursor including the identification of a major bottleneck and competing reactions. We carried out kinetic analysis of the aminotransferase that catalyzes a limiting step of the pathway. Our in vitro reconstituted pathway also provided a platform to test the combinatorial enzymatic synthesis of other dTDP-activated deoxyhexoses as potential tools for "glycodiversification" of natural products. To this end, we replaced the stereospecific ketoreductase that acts in the last step of dTDP-l-daunosamine biosynthesis with an enzyme from a heterologous pathway with opposite stereospecificity and found that it is active in the in vitro pathway, demonstrating the potential for the enzymatic synthesis of nucleotide-activated sugars with regio- and stereospecific tailoring.
Collapse
Affiliation(s)
- F Ifthiha Mohideen
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6
| | - Lan Huong Nguyen
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6
| | - Joël D Richard
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Sara Ouadhi
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6.,Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6
| | - David H Kwan
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6.,Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
6
|
Wei J, Chen B, Dong J, Wang X, Li Y, Liu Y, Guan W. Salinomycin biosynthesis reversely regulates the β-oxidation pathway in Streptomyces albus by carrying a 3-hydroxyacyl-CoA dehydrogenase gene in its biosynthetic gene cluster. Microb Biotechnol 2022; 15:2890-2904. [PMID: 36099515 PMCID: PMC9733648 DOI: 10.1111/1751-7915.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.
Collapse
Affiliation(s)
- Jiaxiu Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Binbin Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhouChina
| | - Jianxin Dong
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Xueyu Wang
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yongquan Li
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yingchun Liu
- Department of ChemistryZhejiang UniversityHangzhouChina
| | - Wenjun Guan
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
7
|
Doxorubicin Induces Bone Loss by Increasing Autophagy through a Mitochondrial ROS/TRPML1/TFEB Axis in Osteoclasts. Antioxidants (Basel) 2022; 11:antiox11081476. [PMID: 36009195 PMCID: PMC9404930 DOI: 10.3390/antiox11081476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Doxorubicin (DOX), a widely used chemotherapeutic agent, has been linked to an increased risk of bone damage in human patients and induces bone loss in mice. DOX induces autophagy, which contributes to bone homeostasis and excess autophagy in osteoclasts (OCs), resulting in bone loss. We hypothesized that DOX-induced bone loss is caused by the induction of autophagy in OCs. In vitro, DOX significantly increased the area of OCs and bone resorption activity, whereas it decreased OC number through apoptosis. DOX enhanced the level of LC3II and acidic vesicular organelles-containing cells in OCs, whereas an autophagy inhibitor, 3-methyladenine (3-MA), reversed these, indicating that enhanced autophagy was responsible for the effects of DOX. Increased mitochondrial reactive oxygen species (mROS) by DOX oxidized transient receptor potential mucolipin 1 (TRPML1) on the lysosomal membrane, which led to nuclear localization of transcription factor EB (TFEB), an autophagy-inducing transcription factor. In vivo, micro-computerized tomography analysis revealed that the injection of 3-MA reversed DOX-induced bone loss, and tartrate-resistant acid phosphatase staining showed that 3-MA reduced the area of OCs on the bone surface, which was enhanced upon DOX administration. Collectively, DOX-induced bone loss is at least partly attributable to autophagy upregulation in OCs via an mROS/TRPML1/TFEB axis.
Collapse
|
8
|
Zhu T, Zhang H, Li S, Wu K, Yin Y, Zhang X. Detoxified pneumolysin derivative ΔA146Ply inhibits autophagy and induces apoptosis in acute myeloid leukemia cells by activating mTOR signaling. Exp Mol Med 2022; 54:601-612. [PMID: 35538212 PMCID: PMC9166762 DOI: 10.1038/s12276-022-00771-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/07/2022] [Accepted: 02/13/2022] [Indexed: 11/29/2022] Open
Abstract
Leukemia is caused by the malignant clonal expansion of hematopoietic stem cells, and in adults, the most common type of leukemia is acute myeloid leukemia (AML). Autophagy inhibitors are often used in preclinical and clinical models in leukemia therapy. However, clinically available autophagy inhibitors and their efficacy are very limited. More effective and safer autophagy inhibitors are urgently needed for leukemia therapy. In a previous study, we showed that ΔA146Ply, a mutant of pneumolysin that lacks hemolytic activity, inhibited autophagy of triple-negative breast cancer cells by activating mannose receptor (MR) and toll-like receptor 4 (TLR4) and that tumor-bearing mice tolerated ΔA146Ply well. Whether this agent affects AML cells expressing TLR4 and MR and the related mechanisms remain to be determined. In this study, we found that ΔA146Ply inhibited autophagy and induced apoptosis in AML cells. A mechanistic study showed that ΔA146Ply inhibited autophagy by activating mammalian target of rapamycin signaling and induced apoptosis by inhibiting autophagy. ΔA146Ply also inhibited autophagy and induced apoptosis in a mouse model of AML. Furthermore, the combination of ΔA146Ply and chloroquine synergistically inhibited autophagy and induced apoptosis in vitro and in vivo. Overall, this study provides an alternative effective autophagy inhibitor that may be used for leukemia therapy. A mutated form of the bacterial protein pneumolysin offers a new approach to treating acute myeloid leukemia (AML), due to its ability to stimulate cancer cells to undergo a form of cell suicide called apoptosis. Researchers in China led by Xuemei Zhang at Chongquing Medical University studied the effects of a pneumolysin derivative on cultured human and mouse AML cells. They identified the mechanism by which this derivative activates a known molecular signaling system to inhibit the process of autophagy, in which cells routinely ‘clean up’ degraded or unnecessary components during normal maintenance. This inhibition of autophagy then induced the apoptosis that killed cancer cells. The effect became more pronounced when the pneumolysin derivative was combined with the existing autophagy-inhibiting drug chloroquine. The new combination could be safer and more effective than using chloroquine alone.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Laboratory, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.,Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, and Department of Laboratory Medicine and Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Araji G, Maamari J, Ahmad FA, Zareef R, Chaftari P, Yeung SCJ. The Emerging Role of the Gut Microbiome in the Cancer Response to Immune Checkpoint Inhibitors: A Narrative Review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:13-25. [PMID: 35663831 PMCID: PMC9138420 DOI: 10.36401/jipo-21-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the care of cancer patients. However, the response to ICI therapy exhibits substantial interindividual variability. Efforts have been directed to identify biomarkers that predict the clinical response to ICIs. In recent years, the gut microbiome has emerged as a critical player that influences the efficacy of immunotherapy. An increasing number of studies have suggested that the baseline composition of a patient's gut microbiota and its dysbiosis are correlated with the outcome of cancer immunotherapy. This review tackles the rapidly growing body of evidence evaluating the relationship between the gut microbiome and the response to ICI therapy. Additionally, this review highlights the impact of antibiotic-induced dysbiosis on ICI efficacy and discusses the possible therapeutic interventions to optimize the gut microbiota composition to augment immunotherapy efficacy.
Collapse
Affiliation(s)
- Ghada Araji
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Julian Maamari
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Fatima Ali Ahmad
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rana Zareef
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Patrick Chaftari
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Zhang KP, Fang X, Zhang Y, Chao M. The prognosis of cancer patients undergoing liposomal doxorubicin-based chemotherapy: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26690. [PMID: 34449454 PMCID: PMC8389975 DOI: 10.1097/md.0000000000026690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It is well known that liposome-based delivery of cytotoxic chemotherapeutics has been proposed as a putative strategy to enhance drug tolerability and efficacy compared to the conventional chemotherapy. However, its potential effect on improving prognosis remains largely unknown. The current meta-analysis is to explore the prognosis of cancer patients undergoing liposomal doxorubicin-based chemotherapy. METHODS A detailed review of English and Chinese literature was conducted up to March 21, 2020. We evaluate its possible correlations using hazard ratios (HRs) with 95% confidence intervals (CIs). The pooled data were calculated by STATA software and Review Manager 5.3 software. RESULTS Consequently, 26 studies including 7943 patients were satisfied in current analysis. There were no significant differences between liposomal and conventional chemotherapy in OS (HR = 0.98, 95%CI: 0.93-1.04, P = .544) and PFS (HR = 1.00, 95%CI: 0.92-1.10, P = .945). Likewise, subgroup-analysis regarding country, cancer type, and sample sizes also showed the similar results of the 2 paired groups. CONCLUSION Taken together, our finding has demonstrated that there was no association of undergoing liposomal doxorubicin-based chemotherapy with cancer prognosis. However, detailed and further studies are needed to confirm our conclusion.
Collapse
|
11
|
Brown KV, Wandi BN, Metsä-Ketelä M, Nybo SE. Pathway Engineering of Anthracyclines: Blazing Trails in Natural Product Glycodiversification. J Org Chem 2020; 85:12012-12023. [PMID: 32938175 DOI: 10.1021/acs.joc.0c01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The anthracyclines are structurally diverse anticancer natural products that bind to DNA and poison the topoisomerase II-DNA complex in cancer cells. Rational modifications in the deoxysugar functionality are especially advantageous for synthesizing drugs with improved potency. Combinatorial biosynthesis of glycosyltransferases and deoxysugar synthesis enzymes is indispensable for the generation of glycodiversified anthracyclines. This Synopsis considers recent advances in glycosyltransferase structural biology and site-directed mutagenesis, pathway engineering, and deoxysugar combinatorial biosynthesis with a focus on the generation of "new-to-nature" anthracycline analogues.
Collapse
Affiliation(s)
- Katelyn V Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Benjamin Nji Wandi
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| |
Collapse
|
12
|
Martins-Teixeira MB, Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020; 15:933-948. [PMID: 32314528 DOI: 10.1002/cmdc.202000131] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Anthracyclines are ranked among the most effective chemotherapeutics against cancer. They are glycoside drugs comprising the amino sugar daunosamine linked to a hydroxy anthraquinone aglycone, and act by DNA intercalation, oxidative stress generation and topoisomerase II poisoning. Regardless of their therapeutic value, multidrug resistance and severe cardiotoxicity are important limitations of anthracycline treatment that have prompted the discovery of novel analogues. This review covers the most clinically relevant anthracyclines and their development over decades, since the first discovered natural prototypes to recent semisynthetic and synthetic derivatives. These include registered drugs, drug candidates undergoing clinical trials, and compounds under pre-clinical investigation. The impact of the structural modifications on antitumour activity, toxicity and resistance profile is addressed.
Collapse
Affiliation(s)
- Maristela B Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| |
Collapse
|
13
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
14
|
Wang X, Hui R, Chen Y, Wang W, Chen Y, Gong X, Jin J. Discovery of Novel Doxorubicin Metabolites in MCF7 Doxorubicin-Resistant Cells. Front Pharmacol 2019; 10:1434. [PMID: 31866863 PMCID: PMC6909010 DOI: 10.3389/fphar.2019.01434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/11/2019] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is metabolized to a variety of metabolites in vivo, which has been shown to be associated with cardiotoxicity. We speculate that metabolic processes are also present in tumor cells. A LC-MS/MS method was developed to detect intracellular metabolites. Drug resistant tumor cells with high drug stress tolerance and metabolically active are suitable as materials for this study. Our results show difference in drug metabolites between the wild-type and drug-resistant cells. Three novel doxorubicin metabolites were discovered after the LC-MS/MS analysis. All these metabolites and their profiles of metabolites are totally different from that in liver or kidney in vivo. Our results suggest that tumor cells and drug-resistant tumor cells have a unique drug metabolism pathway for doxorubicin.
Collapse
Affiliation(s)
- Xu Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Renjie Hui
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Wentao Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yujiao Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xiaohai Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
16
|
Engineering Streptomyces peucetius for Doxorubicin and Daunorubicin Biosynthesis. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Leistra AN, Curtis NC, Contreras LM. Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 2018; 52:190-214. [PMID: 30513348 DOI: 10.1016/j.ymben.2018.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are versatile and powerful controllers of gene expression that have been increasingly linked to cellular metabolism and phenotype. In bacteria, identified and characterized ncRNAs range from trans-acting, multi-target small non-coding RNAs to dynamic, cis-encoded regulatory untranslated regions and riboswitches. These native regulators have inspired the design and construction of many synthetic RNA devices. In this work, we review the design, characterization, and impact of ncRNAs in engineering both native and exogenous metabolic pathways in bacteria. We also consider the opportunities afforded by recent high-throughput approaches for characterizing sRNA regulators and their corresponding networks to showcase their potential applications and impact in engineering bacterial metabolism.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Nicholas C Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14:937-950. [PMID: 30118646 DOI: 10.1080/17425255.2018.1513492] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
BSTRACT Introduction: The aim of this study was to investigate the potential role of melatonin in the prevention of chemotherapy-induced nephrotoxicity at the preclinical level. Areas to be covered: To illuminate the possible role of melatonin in preventing chemotherapy-related nephrotoxicity, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed. A comprehensive search strategy was developed to include PubMed, Web of Science, Scopus, and Embase electronic databases from their inception to May 2018. Based on a set of prespecified inclusion and exclusion criteria, 21 non-clinical articles were ultimately included in the study. Expert opinion: Our findings clearly demonstrate that melatonin has a protective role in the prevention of chemotherapy-induced nephrotoxicity which may be caused by different chemotherapy agents such as cyclophosphamide, cisplatin, doxorubicin, methotrexate, oxaliplatin, etoposide, and daunorubicin. On the basis of current review of non-clinical studies, this protective effect of melatonin is attributed to different mechanisms such as reduction of oxidative stress, apoptosis, and inflammation. The findings presented in this review are based on non-clinical studies and thus conducting appropriate clinical trials to evaluate the real effectiveness of the concurrent use of chemotherapy agents with melatonin in the cancer patients is necessary.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Bagher Farhood
- b Departmentof Medical Physics and Radiology, Faculty of Paramedical Sciences , Kashan University of Medical Sciences , Kashan , Iran
| | - Mahban Rahimifard
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Tina Didari
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Baeeri
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Shokoufeh Hassani
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Rohollah Hosseini
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Wang X, Tian X, Wu Y, Shen X, Yang S, Chen S. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization. Prep Biochem Biotechnol 2018; 48:514-521. [PMID: 29939834 DOI: 10.1080/10826068.2018.1466156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Doxorubicin (DXR), which is produced by Streptomyces peucetius, is an important anthracycline-type antibiotic used for the treatment of various cancers. However, due to the low DXR productivity of wild-type S. peucetius, it is difficult to produce DXR by one-step fermentation. In this study, a DXR-resistance screening method was developed to screen for DXR high-producing mutants. Then, S. peucetius SIPI-11 was treated several times with UV and ARTP (atmospheric and room temperature plasma) to induce mutations. Treated strains were screened by spreading on a DXR-containing plate, isolating a mutant (S. peucetius 33-24) with enhanced DXR yield (570 mg/L vs. 119 mg/L for the original strain). The components of the fermentation medium, including the carbon and nitrogen sources, were optimized to further enhance DXR yield (to 850 mg/L). The pH of the fermentation medium and culture temperature were also optimized for effective DXR production. Finally, DXR production by S. peucetius 33-24 was investigated in flask culture and a fermenter. The yield of DXR was as high as 1100 mg/L in a 5-L fermenter, which is the highest DXR productivity reported thus far, suggesting that S. peucetius 33-24 has the potential to produce DXR by direct fermentation.
Collapse
Affiliation(s)
- Xiaoru Wang
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Xiaorong Tian
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Yuanjie Wu
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Xiaofang Shen
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Songbai Yang
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| | - Shaoxin Chen
- a Shanghai Institute of Pharmaceutical Industry , Shanghai , China
| |
Collapse
|
20
|
Wang J, Jia J, Chen R, Ding S, Xu Q, Zhang T, Chen X, Liu S, Lu F. RFX1 participates in doxorubicin-induced hepatitis B virus reactivation. Cancer Med 2018; 7:2021-2033. [PMID: 29601674 PMCID: PMC5943424 DOI: 10.1002/cam4.1468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Cytotoxic chemotherapy drugs, including doxorubicin, can directly promote hepatitis B virus (HBV) replication, but the mechanism has not been fully clarified. This study investigated the potential mechanism underlying the cytotoxic chemotherapy‐mediated direct promotion of HBV replication. We found that HBV replication and regulatory factor X box 1 gene (RFX1) expression were simultaneously promoted by doxorubicin treatment. The amount of RFX1 bound to the HBV enhancer I was significantly increased under doxorubicin treatment. Furthermore, the activity of doxorubicin in promoting HBV replication was significantly attenuated when the expression of endogenous RFX1 was knocked down, and the EP element of HBV enhancer I, an element that mediated the binding of RFX1 and HBV enhancer I, was mutated. In addition, two different sequences of the conserved EP element were found among HBV genotypes A‐D, and doxorubicin could promote the replication of HBV harboring either of the conserved EP elements. Here, a novel pathway in which doxorubicin promoted HBV replication via RFX1 was identified, and it might participate in doxorubicin‐induced HBV reactivation. These findings would be helpful in preventing HBV reactivation during anticancer chemotherapy.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junqiao Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shanlong Ding
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Thuan NH, Dhakal D, Pokhrel AR, Chu LL, Van Pham TT, Shrestha A, Sohng JK. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect. Appl Microbiol Biotechnol 2018; 102:4355-4370. [PMID: 29602983 DOI: 10.1007/s00253-018-8957-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung Street, Da Nang City, Vietnam
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luan Luong Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Thi Thuy Van Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
22
|
Dzwonek M, Załubiniak D, Piątek P, Cichowicz G, Męczynska-Wielgosz S, Stępkowski T, Kruszewski M, Więckowska A, Bilewicz R. Towards potent but less toxic nanopharmaceuticals – lipoic acid bioconjugates of ultrasmall gold nanoparticles with an anticancer drug and addressing unit. RSC Adv 2018; 8:14947-14957. [PMID: 35541347 PMCID: PMC9079921 DOI: 10.1039/c8ra01107a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023] Open
Abstract
Modification of ultrasmall gold nanoparticles (AuNPs) with the lipoic acid derivative of folic acid was found to enhance their accumulation in the cancer cell, as compared to AuNPs without addressing units.
Collapse
Affiliation(s)
| | | | - Piotr Piątek
- Faculty of Chemistry
- University of Warsaw
- Warsaw
- Poland
| | - Grzegorz Cichowicz
- Czochralski Laboratory of Advanced Crystal Engineering
- Biological and Chemical Research Centre
- Faculty of Chemistry
- University of Warsaw
- 02-089 Warsaw
| | - Sylwia Męczynska-Wielgosz
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
| | - Tomasz Stępkowski
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
- Department of Molecular Biology and Translational Research
| | | | | |
Collapse
|
23
|
Alterations of biomechanics in cancer and normal cells induced by doxorubicin. Biomed Pharmacother 2018; 97:1195-1203. [DOI: 10.1016/j.biopha.2017.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022] Open
|
24
|
Ser HL, Tan LTH, Law JWF, Chan KG, Duangjai A, Saokaew S, Pusparajah P, Ab Mutalib NS, Khan TM, Goh BH, Lee LH. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces. Front Microbiol 2017; 8:2065. [PMID: 29163380 PMCID: PMC5672783 DOI: 10.3389/fmicb.2017.02065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Vice Chancellor Office, Jiangsu University, Zhenjiang, China
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Department of Pharmacy, Absyn University Peshawar, Peshawar, Pakistan
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
25
|
Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur J Med Chem 2017; 142:416-423. [PMID: 28870452 DOI: 10.1016/j.ejmech.2017.08.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
In this study, we propose doxorubicin (DOX) loaded oligonucleotides (ONTs) attached to gold nanoparticles (AuNPs) as a drug delivery system for cancer chemotherapy. DOX is one of the representative cancer chemotherapy agents and is widely used by many researchers as a chemotherapy agent in the drug delivery system. Due to the advantages of AuNPs such as simple steps in synthesis, high surface-area-to-volume ratio, and biocompatibility, we utilized AuNPs as drug delivery vehicle. AuNPs were synthesized by chemical reduction to be 13 nm diameter. The G-C rich oligonucleotides were used both for drug loading sites and AuNPs capping agents. 80% of DOX in solution could be bound to ONTs on AuNPs to became DOX-loaded AuNPs coated with ONTs (Doxorubicin-Oligomer-AuNP, DOA), and about 28% of loaded DOX was released from the as-prepared DOA. Confocal microscopy observation showed that DOA was well transported into cells, and finally the DOX was released into the cell nucleus. The drug's efficacies such as in vitro cytotoxicity and in vivo tumor growth inhibition were demonstrated with SW480 colon cancer cell line and a xenograft mouse model. MTT assay was performed to see the cytotoxicity effect on SW480 cells treated with DOA for 24 h, and the cell viability was determined to be 41.77% (p < 0.001). When DOA was administered regularly to a tumor bearing mouse, the tumor growth inhibition degree was examined by measuring the tumor size. The treatment-control (T/C) ratio was found to be 0.69. Thus, our results suggest the use of DOAs as promising drug delivery systems for colorectal cancer therapy.
Collapse
|
26
|
Oliveira VC, Constante SAR, Orsolin PC, Nepomuceno JC, de Rezende AAA, Spanó MA. Modulatory effects of metformin on mutagenicity and epithelial tumor incidence in doxorubicin-treated Drosophila melanogaster. Food Chem Toxicol 2017; 106:283-291. [DOI: 10.1016/j.fct.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022]
|
27
|
Abstract
The human gut microbiome modulates many host processes, including metabolism, inflammation, and immune and cellular responses. It is becoming increasingly apparent that the microbiome can also influence the development of cancer. In preclinical models, the host response to cancer treatment has been improved by modulating the gut microbiome; this is known to have an altered composition in many diseases, including cancer. In addition, cancer treatment with microbial agents or their products has the potential to shrink tumours. However, the microbiome could also negatively influence cancer prognosis through the production of potentially oncogenic toxins and metabolites by bacteria. Thus, future antineoplastic treatments could combine the modulation of the microbiome and its products with immunotherapeutics and more conventional approaches that directly target malignant cells.
Collapse
|
28
|
Choi JS, Doh KO, Kim BK, Seu YB. Synthesis of cholesteryl doxorubicin and its anti-cancer activity. Bioorg Med Chem Lett 2017; 27:723-728. [DOI: 10.1016/j.bmcl.2017.01.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 01/12/2023]
|
29
|
Forget SM, Na J, McCormick NE, Jakeman DL. Biosynthetic 4,6-dehydratase gene deletion: isolation of a glucosylated jadomycin natural product provides insight into the substrate specificity of glycosyltransferase JadS. Org Biomol Chem 2017; 15:2725-2729. [DOI: 10.1039/c7ob00259a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2,6-dideoxy-l-sugar glycosyltransferase is able to transfer d-glucose in a deletion mutant strain.
Collapse
Affiliation(s)
- S. M. Forget
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | - Jungwook Na
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | | - D. L. Jakeman
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- College of Pharmacy
| |
Collapse
|
30
|
Rigby RJ, Carr J, Orgel K, King SL, Lund PK, Dekaney CM. Intestinal bacteria are necessary for doxorubicin-induced intestinal damage but not for doxorubicin-induced apoptosis. Gut Microbes 2016; 7:414-23. [PMID: 27459363 PMCID: PMC5046166 DOI: 10.1080/19490976.2016.1215806] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Doxorubicin (DOXO) induces significant, but transient, increases in apoptosis in the stem cell zone of the jejunum, followed by mucosal damage involving a decrease in crypt proliferation, crypt number, and villus height. The gastrointestinal tract is home to a vast population of commensal bacteria and numerous studies have demonstrated a symbiotic relationship between intestinal bacteria and intestinal epithelial cells (IEC) in maintaining homeostatic functions of the intestine. However, whether enteric bacteria play a role in DOXO-induced damage is not well understood. We hypothesized that enteric bacteria are necessary for induction of apoptosis and damage associated with DOXO treatment. Conventionally raised (CONV) and germ free (GF) mice were given a single injection of DOXO, and intestinal tissue was collected at 6, 72, and 120 h after treatment and from no treatment (0 h) controls. Histology and morphometric analyses quantified apoptosis, mitosis, crypt depth, villus height, and crypt density. Immunostaining for muc2 and lysozyme evaluated Paneth cells, goblet cells or dual stained intermediate cells. DOXO administration induced significant increases in apoptosis in jejunal epithelium regardless of the presence of enteric bacteria; however, the resulting injury, as demonstrated by statistically significant changes in crypt depth, crypt number, and proliferative cell number, was dependent upon the presence of enteric bacteria. Furthermore, we observed expansion of Paneth and goblet cells and presence of intermediate cells only in CONV and not GF mice. These findings provide evidence that manipulation and/or depletion of the enteric microbiota may have clinical significance in limiting chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Rachael J. Rigby
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Jacquelyn Carr
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kelly Orgel
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stephanie L. King
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, USA
| | - P. Kay Lund
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher M. Dekaney
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA,Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, USA
| |
Collapse
|
31
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
32
|
Pillai VB, Bindu S, Sharp W, Fang YH, Kim G, Gupta M, Samant S, Gupta MP. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol 2016; 310:H962-72. [PMID: 26873966 DOI: 10.1152/ajpheart.00832.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Abstract
Doxorubicin (Doxo) is a chemotherapeutic drug widely used to treat variety of cancers. One of the most serious side effects of Doxo is its dose-dependent and delayed toxicity to the heart. Doxo is known to induce cardiac mitochondrial damage. Recently, the mitochondrial sirtuin SIRT3 has been shown to protect mitochondria from oxidative stress. Here we show that overexpression of SIRT3 protects the heart from toxicity of Doxo by preventing the drug-induced mitochondrial DNA (mtDNA) damage. Doxo treatment caused depletion of Sirt3 levels both in primary cultures of cardiomyocytes and in mouse hearts, which led to massive acetylation of mitochondrial proteins. Doxo-induced toxicity to cardiomyocytes was associated with increased reactive oxygen species (ROS) production, mitochondrial fragmentation, and cell death. Overexpression of SIRT3 helped to attenuate Doxo-induced ROS levels and cardiomyocyte death. Sirt3 knockout (Sirt3.KO) mice could not endure the full dose of Doxo treatment, developed exacerbated cardiac hypertrophy, and died during the course of treatment, whereas Sirt3 transgenic (Sirt3.tg) mice were protected against Doxo-induced cardiotoxicity. Along with Sirt3, we also observed a concomitant decrease in levels of oxoguanine-DNA glycosylase-1 (OGG1), a major DNA glycosylase that hydrolyzes oxidized-guanine (8-oxo-dG) to guanine. Depletion of OGG1 levels was associated with increased mtDNA damage. Sirt3.KO mice and Doxo-treated mice showed increased 8-oxo-dG adducts in DNA and corresponding increase in mtDNA damage, whereas, 8-oxo-dG adducts and mtDNA damage were markedly reduced in Sirt3 overexpressing transgenic mice hearts. These results thus demonstrated that Sirt3 activation protects the heart from Doxo-induced cardiotoxicity by maintaining OGG1 levels and protecting mitochondria from DNA damage.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Samik Bindu
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Will Sharp
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Yong Hu Fang
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Gene Kim
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Madhu Gupta
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois
| | - Sadhana Samant
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Nakano I, Soe CZ, Codd R. Isolation of doxorubicin from a bacterial culture using immobilised metal ion affinity chromatography. RSC Adv 2015. [DOI: 10.1039/c5ra07639k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin was isolated as a free ligand from aStreptomyces peucetiusvar.caesiusculture using Ni(ii)-based IMAC. This easy-to-use, water-compatible method could improve the security of doxorubicin supply.
Collapse
Affiliation(s)
- I. Nakano
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| | - C. Z. Soe
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| | - R. Codd
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| |
Collapse
|
34
|
Das P, Sarkar S, Mandal M, Sen R. Green surfactant of marine origin exerting a cytotoxic effect on cancer cell lines. RSC Adv 2015. [DOI: 10.1039/c5ra07168b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work reveals the efficacy of a marine antimicrobial lipopeptide biosurfactant in blocking proliferation of breast cancer and colon cancer cell lines, without displaying any significant antioxidant activity.
Collapse
Affiliation(s)
- Palashpriya Das
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Siddik Sarkar
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Mahitosh Mandal
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Ramkrishna Sen
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
35
|
Zabka A, Polit JT, Bernasińska J, Maszewski J. DNA topoisomerase II-dependent control of the cell cycle progression in root meristems of Allium cepa. Cell Biol Int 2013; 38:355-67. [PMID: 24302674 DOI: 10.1002/cbin.10211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/27/2013] [Indexed: 12/14/2022]
Abstract
The catalytic ability of DNA topoisomerases (Topo) to generate short-term DNA breaks allow these enzymes to play crucial functions in managing DNA topology during S-phase replication, transcription, and chromatin-remodelling processes required to achieve commitment for the onset and transition through mitosis. Our experiments on root meristem cells of onion (Allium cepa) were designed to gain insight into the contribution of Topo II to plant-specific progression throughout interphase and mitosis. Irrespective of the position of the cell in interphase, the immunofluorescence of Topo II revealed similar nuclear labelling pattern with well defined signals dispersed in the nucleoplasm and the cortical zone of the nucleolus. Only weak labelling was detected in metaphase and anaphase chromosomes. Experiments with two potent anti-Topo II agents, doxorubicin (DOX, an anthracycline) and a bisdioxopiperazine derivative, ICRF-193, suggest that the inhibition-mediated increase in Topo II immunofluorescence may represent a compensatory mechanism, by which an up-regulated expression of the enzyme tends to counteract the drug-induced loss of indispensable catalytic and relaxation functions. γ-H2AX immunolabelling seems to indicate that both DOX- and ICRF-193-induced alterations in cell cycle progression reflect primarily the activity of the G2/M DNA damage checkpoint. Our findings provide evidence for the plant-specific cell cycle control mechanism induced by Topo II inhibitors under DNA stress conditions.
Collapse
Affiliation(s)
- Aneta Zabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | | | | | | |
Collapse
|
36
|
Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, Czyzkowska A, Skrzypczyk G, Adamczuk M, Sitarek T, Stawinski P, Tudek A, Wanasz K, Wardal E, Piechucka E, Bartosik D. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria). PLoS One 2012; 7:e32277. [PMID: 22359677 PMCID: PMC3281130 DOI: 10.1371/journal.pone.0032277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/24/2012] [Indexed: 11/30/2022] Open
Abstract
Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|