1
|
Peng J, Xu Z, Li L, Zhao B, Guo Y. Disruption of the sensor kinase phoQ gene decreases acid resistance in plant growth-promoting rhizobacterium Rahnella aquatilis HX2. J Appl Microbiol 2023; 134:6991427. [PMID: 36748653 DOI: 10.1093/jambio/lxad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
AIMS Rahnella aquatilis HX2, a promising plant growth-promoting rhizobacterium (PGPR) in the field, contains genes homologous to the PhoP/PhoQ two-component regulatory system. Although this system regulates stress response in numerous pathogens, PhoP/PhoQ characterization in a PGPR has not received in-depth exploration. METHODS AND RESULTS The phoQ gene was mutated in strain HX2 using an in-frame deletion strategy. Compared to the wild type, the phoQ mutant exhibited increased sensitivity to acidic conditions (pH 4.0) in a chemically defined medium and in mild acidic natural soil (pH 5.7). The phoQ mutant also exhibited increased swimming motility under acidic conditions. Acid resistance was restored in the mutant by introducing the phoQ gene on a plasmid. Three acid resistance genes, add, cfa, and fur were downregulated significantly, whereas the chaperone encoding gene, dnak, was upregulated when the phoQ mutant was exposed to acid stress. CONCLUSIONS This study suggested that the PhoP/PhoQ system positively regulates the acid resistance of R. aquatilis HX2.
Collapse
Affiliation(s)
- Jing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lei Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Bingjie Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;2012, 56, 1019−103022106224; ChengH. Y.;2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Shahbaz MU, Qian S, Yun F, Zhang J, Yu C, Tian F, Yang F, Chen H. Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1196-1208. [PMID: 32720873 DOI: 10.1094/mpmi-04-20-0088-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degenerate GGDEF/EAL domain protein Filp was previously shown to function as a cyclic di-GMP (c-di-GMP) signal receptor through its specific interaction with an atypical PilZ domain protein PilZX3 (formerly PXO_02715) and that this interaction is involved in regulating virulence in Xanthomonas oryzae pv. oryzae. As a step toward understanding the regulatory role of Filp/PilZX3-mediated c-di-GMP signaling in the virulence of X. oryzae pv. oryzae, differentially expressed proteins (DEPs) downstream of Filp/PilZX3 were identified by isobaric tagging for relative and absolute quantitation (iTRAQ). A total of 2,346 proteins were identified, of which 157 displayed significant differential expression in different strains. Western blot and quantitative reverse transcription-PCR analyses showed that the expression of HrrP (histidine kinase-response regulator hybrid protein), PhrP (PhoPQ-regulated protein), ProP (prophage Lp2 protein 6) were increased in the ∆filp, ∆pilZX3, and ∆filp∆pilZX3 mutant strains, while expression of CheW1 (chemotaxis protein CheW1), EdpX2 (the second EAL domain protein identified in X. oryzae pv. oryzae), HGdpX2 (the second HD-GYP domain protein identified in X. oryzae pv. oryzae) was decreased in all mutant strains compared with that in the wild type, which was consistent with the iTRAQ data. Deletion of the hrrP and proP genes resulted in significant increases in virulence, whereas deletion of the cheW1, hGdpX2, or tdrX2 genes resulted in decreased virulence. Enzyme assays indicated that EdpX2 and HGdpX2 were active phosphodiesterases (PDEs). This study provides a proteomic description of putative regulatory pathway of Filp and PilZX3 and characterized novel factors that contributed to the virulence of X. oryzae pv. oryzae regulated by c-di-GMP signaling.
Collapse
Affiliation(s)
- Muhammad Umar Shahbaz
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Plant Pathology Section, Plant Pathology Research Institute, AARI, Faisalabad 38850, Pakistan
| | - Shanshan Qian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei Yun
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Zhang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fenghuan Yang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Xie Y, Shao X, Deng X. Regulation of type III secretion system inPseudomonas syringae. Environ Microbiol 2019; 21:4465-4477. [DOI: 10.1111/1462-2920.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen 518057 China
| |
Collapse
|
5
|
Sibanda S, Kwenda S, Tanui CK, Shyntum DY, Coutinho TA, Moleleki LN. Transcriptome Profiling Reveals the EanI/R Quorum Sensing Regulon in Pantoea Ananatis LMG 2665 T. Genes (Basel) 2018; 9:E148. [PMID: 29518982 PMCID: PMC5867869 DOI: 10.3390/genes9030148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022] Open
Abstract
Pantoea ananatis LMG 2665T synthesizes and utilizes acyl homoserine lactones (AHLs) for signalling. The complete set of genes regulated by the EanI/R quorum sensing (QS) system in this strain is still not fully known. In this study, RNA-sequencing (RNA-seq) was used to identify the EanI/R regulon in LMG 2665T. Pairwise comparisons of LMG 2665T in the absence of AHLs (Optical density (OD)600 = 0.2) and in the presence of AHLs (OD600 = 0.5) were performed. Additionally, pairwise comparisons of LMG 2665T and its QS mutant at OD600 = 0.5 were undertaken. In total, 608 genes were differentially expressed between LMG 2665T at OD600 = 0.5 versus the same strain at OD600 = 0.2 and 701 genes were differentially expressed between LMG 2665T versus its QS mutant at OD600 = 0.5. A total of 196 genes were commonly differentially expressed between the two approaches. These constituted approximately 4.5% of the whole transcriptome under the experimental conditions used in this study. The RNA-seq data was validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Genes found to be regulated by EanI/R QS were those coding for redox sensing, metabolism, flagella formation, flagella dependent motility, cell adhesion, biofilm formation, regulators, transport, chemotaxis, methyl accepting proteins, membrane proteins, cell wall synthesis, stress response and a large number of hypothetical proteins. The results of this study give insight into the genes that are regulated by the EanI/R system in LMG 2665T. Functional characterization of the QS regulated genes in LMG 2665T could assist in the formulation of control strategies for this plant pathogen.
Collapse
Affiliation(s)
- Siphathele Sibanda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
- Centre for Microbial Ecology and Genomics (CMEG), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Collins K Tanui
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Divine Y Shyntum
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Teresa A Coutinho
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
- Centre for Microbial Ecology and Genomics (CMEG), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Lucy N Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| |
Collapse
|
6
|
Hu Y, Huang H, Cheng X, Shu X, White AP, Stavrinides J, Köster W, Zhu G, Zhao Z, Wang Y. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 2017; 19:3879-3895. [DOI: 10.1111/1462-2920.13755] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Yueming Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences; Shenzhen University Health Science Center; Shenzhen 518060 P.R. China
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Xi Cheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences; Shenzhen University Health Science Center; Shenzhen 518060 P.R. China
| | - Xingsheng Shu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences; Shenzhen University Health Science Center; Shenzhen 518060 P.R. China
| | - Aaron P. White
- Vaccine and Infectious Disease Organization; University of Saskatchewan; Saskatoon SK Canada
| | | | - Wolfgang Köster
- Vaccine and Infectious Disease Organization; University of Saskatchewan; Saskatoon SK Canada
| | - Guoqiang Zhu
- College of Veterinary Medicine; Yangzhou University; Yangzhou China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences; Shenzhen University Health Science Center; Shenzhen 518060 P.R. China
| |
Collapse
|
7
|
Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. FRONTIERS IN PLANT SCIENCE 2015; 6:750. [PMID: 26442063 PMCID: PMC4585253 DOI: 10.3389/fpls.2015.00750] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 05/20/2023]
Abstract
Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant's growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant-pathogen interaction in nutrient perspective.
Collapse
|
8
|
Reid-Yu SA, Tuinema BR, Small CN, Xing L, Coombes BK. CXCL9 contributes to antimicrobial protection of the gut during citrobacter rodentium infection independent of chemokine-receptor signaling. PLoS Pathog 2015; 11:e1004648. [PMID: 25643352 PMCID: PMC4333760 DOI: 10.1371/journal.ppat.1004648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Chemokines have been shown to be effective bactericidal molecules against a variety of bacteria and fungi in vitro. These direct antimicrobial effects are independent of their chemotactic activities involving immunological receptors. However, the direct biological role that these proteins may play in host defense, particularly against intestinal pathogens, is poorly understood. Here, we show that CXCL9, an ELR- chemokine, exhibits direct antimicrobial activity against Citrobacter rodentium, an attaching/effacing pathogen that infects the gut mucosa. Inhibition of this antimicrobial activity in vivo using anti-CXCL9 antibodies increases host susceptibility to C. rodentium infection with pronounced bacterial penetration into crypts, increased bacterial load, and worsened tissue pathology. Using Rag1-/- mice and CXCR3-/- mice, we demonstrate that the role for CXCL9 in protecting the gut mucosa is independent of an adaptive response or its immunological receptor, CXCR3. Finally, we provide evidence that phagocytes function in tandem with NK cells for robust CXCL9 responses to C. rodentium. These findings identify a novel role for the immune cell-derived CXCL9 chemokine in directing a protective antimicrobial response in the intestinal mucosa. Host defense peptides are an essential part of the innate immune response to pathogens, particularly at mucosal surfaces. Some chemokines, previously known for their ability to recruit immune cells to a site of inflammation, have been identified to have direct antimicrobial activity in vitro against a variety of pathogens. Despite this, it was unknown whether chemokines play a role in protecting the gut mucosa against enteric pathogens, independent of their immunological receptors. Using a mouse model of enteric pathogen infection with both wild type mice and genetic knockouts, we showed that the chemokine CXCL9 has direct antimicrobial activity against pathogen infection. This antimicrobial activity prevented the invasion of bacteria into intestinal crypts, thus protecting the host from immunopathology. Neutralization of this CXCL9-dependent antimicrobial activity increased host susceptibility to infection, leading to bacterial penetration into intestinal crypts and increased tissue pathology. These data support the importance of a receptor-independent role for chemokines in host defense at mucosal surfaces and may offer alternative treatment strategies for infections, particularly in regards to organisms that are resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Sarah A. Reid-Yu
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian R. Tuinema
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cherrie N. Small
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lydia Xing
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
10
|
Li W, Ancona V, Zhao Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genomics 2013; 289:63-75. [PMID: 24218204 DOI: 10.1007/s00438-013-0790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Collapse
Affiliation(s)
- Wenting Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL, 61801, USA
| | | | | |
Collapse
|
11
|
Abstract
Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg(2+), at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments.
Collapse
|
12
|
Pester D, Milčevičová R, Schaffer J, Wilhelm E, Blümel S. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees. PLoS One 2012; 7:e32583. [PMID: 22412891 PMCID: PMC3295760 DOI: 10.1371/journal.pone.0032583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/28/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). CONCLUSION/SIGNIFICANCE The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular level.
Collapse
Affiliation(s)
- Doris Pester
- Institute of Plant Health, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria.
| | | | | | | | | |
Collapse
|
13
|
Zhao Y, Qi M. Comparative Genomics of Erwinia amylovora and Related Erwinia Species-What do We Learn? Genes (Basel) 2011; 2:627-39. [PMID: 24710213 PMCID: PMC3927617 DOI: 10.3390/genes2030627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 01/26/2023] Open
Abstract
Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| |
Collapse
|