1
|
Toft CJ, Sorenson AE, Schaeffer PM. A soft Tus-Ter interaction is hiding a fail-safe lock in the replication fork trap of Dickeya paradisiaca. Microbiol Res 2022; 263:127147. [PMID: 35914414 DOI: 10.1016/j.micres.2022.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures. Dickeya paradisiaca harbours a somewhat degenerate type I fork trap with a unique Ter1 adjacent to tus gene on one side of the circular chromosome and three putative Ter2-4 sites on the other side of the fork trap. The two innermost Ter1 and Ter2 sites are only separated by 18 kb, which is the shortest distance between two innermost Ter sites of any chromosomal fork trap identified so far. Of note, the dif site is located between these two sites, coinciding with a sharp GC-skew flip. Here we examined and compared the binding modalities of E. coli and D. paradisiaca Tus proteins for these Ter sites. Surprisingly, while Ter1-3 were functional, no significant Tus binding was observed for Ter4 even in low salt conditions, which is in stark contrast with the significant non-specific protein-DNA interactions that occur with E. coli Tus. Even more surprising was the finding that D. paradisiaca Tus has a relatively moderate binding affinity to double-stranded Ter while retaining an extremely high affinity to Ter-lock sequences. Our data revealed major differences in the salt resistance and stability between the D. paradisiaca and E. coli Tus protein complexes, suggesting that while Tus protein evolution can be quite flexible regarding the initial Ter binding step, it requires a highly stringent purifying selection for its final locked complex formation.
Collapse
Affiliation(s)
- Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia.
| |
Collapse
|
2
|
Rajak MK, Bhatnagar S, Pandey S, Kumar S, Verma S, Patel AK, Sundd M. Leishmania major biotin protein ligase forms a unique cross-handshake dimer. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:510-521. [PMID: 33825711 DOI: 10.1107/s2059798321001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022]
Abstract
Biotin protein ligase catalyses the post-translational modification of biotin carboxyl carrier protein (BCCP) domains, a modification that is crucial for the function of several carboxylases. It is a two-step process that results in the covalent attachment of biotin to the ϵ-amino group of a conserved lysine of the BCCP domain of a carboxylase in an ATP-dependent manner. In Leishmania, three mitochondrial enzymes, acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, depend on biotinylation for activity. In view of the indispensable role of the biotinylating enzyme in the activation of these carboxylases, crystal structures of L. major biotin protein ligase complexed with biotin and with biotinyl-5'-AMP have been solved. L. major biotin protein ligase crystallizes as a unique dimer formed by cross-handshake interactions of the hinge region of the two monomers formed by partial unfolding of the C-terminal domain. Interestingly, the substrate (BCCP domain)-binding site of each monomer is occupied by its own C-terminal domain in the dimer structure. This was observed in all of the crystals that were obtained, suggesting a closed/inactive conformation of the enzyme. Size-exclusion chromatography studies carried out using high protein concentrations (0.5 mM) suggest the formation of a concentration-dependent dimer that exists in equilibrium with the monomer.
Collapse
Affiliation(s)
- Manoj Kumar Rajak
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Sonika Bhatnagar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Shubhant Pandey
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752 050, India
| | - Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110 016, India
| | - Shalini Verma
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110 016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
3
|
Sorenson AE, Schaeffer PM. High-Throughput Differential Scanning Fluorimetry of GFP-Tagged Proteins. Methods Mol Biol 2020; 2089:69-85. [PMID: 31773648 DOI: 10.1007/978-1-0716-0163-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Differential scanning fluorimetry is useful for a wide variety of applications including characterization of protein function, structure-activity relationships, drug screening, and optimization of buffer conditions for protein purification, enzyme activity, and crystallization. A limitation of classic differential scanning fluorimetry is its reliance on highly purified protein samples. This limitation is overcome through differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP). DSF-GTP specifically measures the unfolding and aggregation of a target protein fused to GFP through its proximal perturbation effects on GFP fluorescence. As a result of this unique principle, DSF-GTP can specifically measure the thermal stability of a target protein in the presence of other proteins. Additionally, the GFP provides a unique in-assay quality control measure. Here, we describe the workflow, steps, and important considerations for executing a DSF-GTP experiment in a 96-well plate format.
Collapse
Affiliation(s)
- Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia.
| |
Collapse
|
4
|
Sorenson AE, Schaeffer PM. A new bivalent fluorescent fusion protein for differential Cu(II) and Zn(II) ion detection in aqueous solution. Anal Chim Acta 2019; 1101:120-128. [PMID: 32029102 DOI: 10.1016/j.aca.2019.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022]
Abstract
Simple and easy to engineer metal-sensing molecules that are capable of differentiating metal ions and producing metal-specific signals are highly desirable. Metal ions affect the thermal stability of proteins by increasing or decreasing their resistance to unfolding. This work illustrates a new strategy for designing bivalent fluorescent fusion proteins capable of differentiating metal ions in solution through their distinct effects on a protein's thermal stability. A new dual purpose metal sensor was developed consisting of biotin protein ligase (BirA) from B. pseudomallei (Bp) fused to green fluorescent protein (GFP). When coupled with differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) for signal-transduction detection, Bp BirA-GFP yields distinct protein unfolding signatures with Zn(II) and Cu(II) ions in aqueous solutions. The limit of detection of the system is ∼1 μM for both metal species. The system can be used in a variety of high-throughput assay formats including for the screening of metal-binding proteins and chelators. Bp BirA-GFP has also the additional benefit of being useful in Cu(II) ion field-testing applications through simple visual observation of a temperature-dependent loss of fluorescence. Bp BirA-GFP is the first example of a 2protein-based dual purpose Cu(II) and Zn(II) ion sensor compatible with two different yet complementary signal-transduction detection systems.
Collapse
Affiliation(s)
- A E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, 4811, Australia
| | - P M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, 4811, Australia.
| |
Collapse
|
5
|
Kovacs-Simon A, Hemsley CM, Scott AE, Prior JL, Titball RW. Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol 2019; 19:97. [PMID: 31092204 PMCID: PMC6521459 DOI: 10.1186/s12866-019-1469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
Background Burkholderia pseudomallei is a human pathogen causing severe infections in tropical and subtropical regions and is classified as a bio-threat agent. B. thailandensis strain E264 has been proposed as less pathogenic surrogate for understanding the interactions of B. pseudomallei with host cells. Results We show that, unlike B. thailandensis strain E264, the pattern of growth of B. thailandensis strain E555 in macrophages is similar to that of B. pseudomallei. We have genome sequenced B. thailandensis strain E555 and using the annotated sequence identified genes and proteins up-regulated during infection. Changes in gene expression identified more of the known B. pseudomallei virulence factors than changes in protein levels and used together we identified 16% of the currently known B. pseudomallei virulence factors. These findings demonstrate the utility of B. thailandensis strain E555 to study virulence of B. pseudomallei. Conclusions A weakness of studies using B. thailandensis as a surrogate for B. pseudomallei is that the strains used replicate at a slower rate in infected cells. We show that the pattern of growth of B. thailandensis strain E555 in macrophages closely mirrors that of B. pseudomallei. Using this infection model we have shown that virulence factors of B. pseudomallei can be identified as genes or proteins whose expression is elevated on the infection of macrophages. This finding confirms the utility of B. thailandensis strain E555 as a surrogate for B. pseudomallei and this strain should be used for future studies on virulence mechanisms. Electronic supplementary material The online version of this article (10.1186/s12866-019-1469-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Kovacs-Simon
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - C M Hemsley
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - A E Scott
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - J L Prior
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.,CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - R W Titball
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Askin S, Bond TEH, Sorenson AE, Moreau MJJ, Antony H, Davis RA, Schaeffer PM. Selective protein unfolding: a universal mechanism of action for the development of irreversible inhibitors. Chem Commun (Camb) 2018; 54:1738-1741. [DOI: 10.1039/c8cc00090e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selective protein unfolding was combined with high-throughput differential scanning fluorimetry of GFP-tagged proteins for the identification of irreversible enzyme inhibitors.
Collapse
Affiliation(s)
- Samuel Askin
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| | - Thomas E. H. Bond
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| | - Alanna E. Sorenson
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| | - Morgane J. J. Moreau
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| | - Helma Antony
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| | - Rohan A. Davis
- Griffith Institute for Drug Discovery
- Griffith University
- Brisbane
- Australia
| | - Patrick M. Schaeffer
- Centre for Biodiscovery & Molecular Development of Therapeutics
- James Cook University
- 142
- James Cook Drive
- Townsville
| |
Collapse
|
7
|
A green fluorescent protein-based assay for high-throughput ligand-binding studies of a mycobacterial biotin protein ligase. Microbiol Res 2017; 205:35-39. [PMID: 28942842 DOI: 10.1016/j.micres.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023]
Abstract
Biotin protein ligase (BirA) has been identified as an emerging drug target in Mycobacterium tuberculosis due to its essential metabolic role. Indeed, it is the only enzyme capable of covalently attaching biotin onto the biotin carboxyl carrier protein subunit of the acetyl-CoA carboxylase. Despite recent interest in this protein, there is still a gap in cost-effective high-throughput screening assays for rapid identification of mycobacterial BirA-targeting inhibitors. We present for the first time the cloning, expression, purification of mycobacterial GFP-tagged BirA and its application for the development of a high-throughput assay building on the principle of differential scanning fluorimetry of GFP-tagged proteins. The data obtained in this study reveal how biotin and ATP significantly increase the thermal stability (ΔTm=+16.5°C) of M. tuberculosis BirA and lead to formation of a high affinity holoenzyme complex (Kobs=7.7nM). The new findings and mycobacterial BirA high-throughput assay presented in this work could provide an efficient platform for future anti-tubercular drug discovery campaigns.
Collapse
|