1
|
Jiang N, Hong B, Luo K, Li Y, Fu H, Wang J. Isolation of Bacillus subtilis and Bacillus pumilus with Anti- Vibrio parahaemolyticus Activity and Identification of the Anti- Vibrio parahaemolyticus Substance. Microorganisms 2023; 11:1667. [PMID: 37512840 PMCID: PMC10385546 DOI: 10.3390/microorganisms11071667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The adoption of intensive farming has exacerbated disease outbreaks in aquaculture, particularly vibriosis caused by Vibrio parahaemolyticus. The use of probiotics to control V. parahaemolyticus is recognized as a good alternative to antibiotics for avoiding the development of antibiotic-resistant bacteria. In this study, two strains of B. HLJ1 and B. C1 with strong inhibitory activity on V. parahaemolyticus were isolated from aquaculture water and identified as Bacillus subtilis and Bacillus pumilus, respectively. Both B. HLJ1 and B. C1 lacked antibiotic resistance and virulence genes, suggesting that they are safe for use in aquaculture. In addition, these two strains can tolerate acid environments, produce spores, secrete extracellular enzymes, and co-aggregate as well as auto-aggregate with V. parahaemolyticus. B. HLJ1 and B. C1 produced the same anti-V. parahaemolyticus substance, which was identified as AI-77-F and belongs to amicoumacins. Both B. C1 and B. HLJ1 showed inhibitory activity against 11 different V. parahaemolyticus and could effectively control the growth of V. parahaemolyticus in simulated aquaculture wastewater when the concentration of B. C1 and B. HLJ1 reached 1 × 107 CFU/mL. This study shows that B. HLJ1 and B. C1 have great potential as aquaculture probiotics.
Collapse
Affiliation(s)
- Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kui Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Lee G, Heo S, Kim T, Na HE, Lee JH, Jeong DW. Comparison of four multilocus sequence typing schemes and amino acid biosynthesis based on genomic analysis of Bacillus subtilis. PLoS One 2023; 18:e0282092. [PMID: 36809283 PMCID: PMC9943010 DOI: 10.1371/journal.pone.0282092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Bacillus subtilis, a valuable industrial microorganism used in starter cultures in soybean fermentation, is a species of bacteria with interspecies diversity. Here, four multilocus sequence typing (MLST) schemes developed to assess the diversity of B. subtilis or Bacillus spp. were applied and compared to confirm the interspecies diversity of B. subtilis. In addition, we analyzed correlations between amino acid biosynthesis genes and sequence types (STs); this is important because amino acids are key taste components in fermented foods. On applying the four MLST methods to 38 strains and the type strain of B. subtilis, 30 to 32 STs were identified. The discriminatory power was 0.362-0.964 for the genes used in the MLST methods; the larger the gene, the greater the number of alleles and polymorphic sites. All four MLST methods showed a correlation between STs and strains that do not possess the hutHUIG operon (which contains genes required for the production of glutamate from histidine). This correlation was verified using 168 further genome-sequence strains.
Collapse
Affiliation(s)
- Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Tao Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Hong-Eun Na
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
3
|
Dabiré Y, Somda NS, Somda MK, Compaoré CB, Mogmenga I, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH. Assessment of probiotic and technological properties of Bacillus spp. isolated from Burkinabe Soumbala. BMC Microbiol 2022; 22:228. [PMID: 36175837 PMCID: PMC9523936 DOI: 10.1186/s12866-022-02642-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Soumbala is a highly loved alkaline traditional fermented food condiment in Burkina Faso. It harbors various microbiota dominated by fermentative Bacillus spp. as functional microorganism with little confirmed health-promoting properties. METHODS The present study aimed to evaluate six Bacillus strains previously isolated and identified from soumbala. These strains were selected as presumptively safe bacteria for probiotic and technological characteristics. These strains were assessed for in vitro probiotic criteria (tolerance to acidic pH, gastric juice, 0.3% (m/v) bile salts, intestinal juice and 0.4% (w/v) phenol, cell surface hydrophobicity, auto-aggregation capacity, antimicrobial activity against foodborne pathogens, antibiotic susceptibility and biofilm production) and technological properties, including protease, amylase, lipase, and tannase activity, as well as poly-γ-glutamic acid (PGA) production and thermo-tolerance. RESULTS All tested Bacillus strains (B54, F20, F24, F21, F26 and F44) presented variable relevant probiotic properties (good tolerance to pH 2 and pH 4, gastric juice, bile salts, intestinal juice and phenol), with marked differences in hydrophobicity and auto-aggregation capacity ranging from 73.62-94.71% and 49.35-92.30%, respectively. They exhibited a broad spectrum of activity against foodborne pathogens depending on target pathogen, with the highest activity exhibited by strain F20 (29.52 mm) against B. cereus 39 (p < 0.001). They also showed good biofilm production as well as variable hydrolytic enzyme activities, including protease (43.00-60.67 mm), amylase (22.59-49.55 mm), lipase (20.02-24.57 mm), and tannase (0-10.67 mm). All tested Bacillus strains tolerated temperature up to 50 °C, while only strains F26 and F44 showed the best PGA production. CONCLUSION Overall, the tested cultures exhibiting potential probiotic and technological characteristics; particularly B. cereus F20, B. benzoevorans F21, B. cabrialessi F26, and B. tequilensis F44 could be a source of probiotic-starters of commercial interest in the production of high-quality soumbala.
Collapse
Affiliation(s)
- Yérobessor Dabiré
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso.
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria.
| | - Namwin Siourimè Somda
- Département Technologie Alimentaire (DTA), Centre National de Recherche Scientifique et Technologique (CNRST) / Institut de Recherche en Sciences Appliquées et Technologies (IRSAT) / Direction Régional de L'Ouest, 03 B.P.2393, Bobo - Dioulasso 03, Burkina Faso
| | - Marius K Somda
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| | - Clarisse B Compaoré
- Département Technologie Alimentaire (DTA), Centre National de Recherche Scientifique et Technologique (CNRST) / Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), 03 B.P. 7047, Ouagadougou 03, Burkina Faso
| | - Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria
| | - Alfred S Traoré
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire des Sciences Biologiques Appliquées, Unité de Formation et de Recherche en Sciences et Technologies (UFR-ST), Université Aube Nouvelle, 01 P.B. 234, Bobo-Dioulasso 01, Burkina Faso
| | - Jerry O Ugwuanyi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria
| | - Mamoudou H Dicko
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| |
Collapse
|
4
|
Lee G, Heo S, Kim T, Na HE, Park J, Lee E, Lee JH, Jeong DW. Discrimination of Bacillus subtilis from Other Bacillus Species Using Specific Oligonucleotide Primers for the Pyruvate Carboxylase and Shikimate Dehydrogenase Genes. J Microbiol Biotechnol 2022; 32:1011-1016. [PMID: 35879295 PMCID: PMC9628935 DOI: 10.4014/jmb.2205.05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis is a useful bacterium in the food industry with applications as a starter strain for fermented food and as a probiotic. However, it is difficult to discriminate B. subtilis from other Bacillus species because of high phenotypic and genetic similarity. In this study, we employed five previously constructed multilocus sequence typing (MLST) methods for the discrimination of B. subtilis from other Bacillus species and all five MLST assays clearly distinguished B. subtilis. Additionally, the 17 housekeeping genes used in the five MLST assays also clearly distinguished B. subtilis. The pyruvate carboxylase (pyrA) and shikimate dehydrogenase (aroE) genes were selected for the discrimination of B. subtilis because of their high number of polymorphic sites and the fact that they displayed the lowest homology among the 17 housekeeping genes. Specific primer sets for the pyrA and aroE genes were designed and PCR products were specifically amplified from B. subtilis, demonstrating the high specificity of the two housekeeping genes for B. subtilis. This species-specific PCR method provides a quick, simple, powerful, and reliable alternative to conventional methods in the detection and identification of B. subtilis.
Collapse
Affiliation(s)
- Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Tao Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Hong-Eun Na
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Junghyun Park
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Eungyo Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea,Corresponding author Phone: +82-2-940-4463 Fax: +82-2-940-4610 E-mail:
| |
Collapse
|
5
|
Owusu-Kwarteng J, Parkouda C, Adewumi GA, Ouoba LII, Jespersen L. Technologically relevant Bacillus species and microbial safety of West African traditional alkaline fermented seed condiments. Crit Rev Food Sci Nutr 2020; 62:871-888. [PMID: 33030021 DOI: 10.1080/10408398.2020.1830026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fermented food condiments serve as a major source of nutrients to many homes in West Africa, especially among the rural poor who use these condiments as a cheap source of protein substitute for milk and other animal protein sources. Traditional fermented West African condiments are produced by spontaneous fermentation of legumes and protein-rich seeds of both cultivated and wild plant species. These fermented condiments are culturally accepted and widely produced in the West African sub-region, and rely on indigenous microbiota responsible for taste, texture, aroma development and the overall unique product characteristics. Detailed understanding of fermentation microbiota and their unique technological and functional properties are fundamental in developing products with enhanced quality and safety, as well as development of specific locally adapted starter cultures. Technologically relevant Bacillus spp., mainly Bacillus subtilis, are the predominant fermentative bacteria responsible for the natural fermentation of condiments across West Africa. Other species of Bacillus including B. amyloliquefaciens, B. licheniformis, B. pumilus, B. megaterium, B. sphaericus, B. cereus, B. badius and B. fusiformis are also frequently involved in the fermentation process. These bacterial species are responsible for flavor development, bio-conversion of complex food molecules, and production of antimicrobial compounds that impact shelf-life and safety, and in some instances, may confer host-beneficial health effects beyond basic nutrition. First, this review provides currently available information on the technologically relevant Bacillus species isolated from fermented food condiments in nine (9) West African countries. In addition, perspectives on harnessing the potentials of the technologically beneficial bacterial strains in fermented condiments in West Africa for enhanced food safety, quality and overall food security is presented.
Collapse
Affiliation(s)
- James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Charles Parkouda
- CNRST/IRSAT/DTA, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | | | - Labia Irène Ivette Ouoba
- Department of Health and Human Sciences, Microbiology Research Unit, London Metropolitan University, London, UK
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Molecular characterization of Bacillus, lactic acid bacteria and yeast as potential probiotic isolated from fermented food. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Kimura 木村 啓太郎 K, Yokoyama 横山 智 S. Trends in the application of Bacillus in fermented foods. Curr Opin Biotechnol 2019; 56:36-42. [PMID: 30227296 DOI: 10.1016/j.copbio.2018.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023]
Abstract
Bacillus species such as Bacillus subtilis and Bacillus amyloliquefaciens are widely used to produce fermented foods from soybeans and locust beans in Asian and West African countries, respectively. Genomic information for B. subtilis strains isolated from Asian Bacillus-fermented foods (BFFs) has been gathered, and the chemical components of fermented products were defined with metabolomic approaches, facilitating the development of new starter strains and the evaluation of health claims. On the other hand, although advanced studies have been performed for some commercially produced BFFs, home-manufactured products still remain to be characterized in rural areas. In West Africa, the microbial flora of BFFs was examined in detail, leading to the isolation of candidates of the starter that produced bacteriocin against Bacillus cereus contaminating the products. These studies may provide a choice of Bacillus strains in food application and increase opportunities for further usage of Bacillus in foods.
Collapse
Affiliation(s)
- Keitarou Kimura 木村 啓太郎
- Applied Microbiology Unit, Food Research Institute, National Agriculture and Food Research Institute (NFRI/NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Satoshi Yokoyama 横山 智
- Department of Geography, Graduate School of Environmental Studies, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|