1
|
Wu X, Jiang B, Zhang Y, Wang Q, Ma Y. Identification and genomic analysis of a pathogenic circovirus associated with maricultured Scophthalmus maximus L. in China. Virus Res 2024; 347:199428. [PMID: 38942295 PMCID: PMC11292549 DOI: 10.1016/j.virusres.2024.199428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In China, a novel pathogen within the genus Circovirus has been identified as a causative agent of the 'novel acute hemorrhage syndrome' (NAHS) in aquacultured populations of turbot (Scophthalmus maximus L.). Histopathological examination using light microscopy revealed extensive necrosis within the cardiac, splenic, and renal tissues of the afflicted fish. Utilizing transmission electron microscopy (TEM), we detected the presence of circovirus particles within the cytoplasm of these cells, with the virions consistently exhibiting a spherical morphology of 20-40 nm in diameter. TEM inspections confirmed the predominance of these virions in the heart, spleen, and kidney. Subsequent molecular characterization through polymerase chain reaction (PCR) analysis corroborated the TEM findings, with positive signals in the aforementioned tissues, in stark contrast to the lack of detection in gill, fin, liver, and intestinal tissues. The TEM observations, supported by PCR electrophoresis data, strongly suggest that the spleen and kidney are the primary targets of the viral infection. Further characterization using biophysical, biochemical assays, and genomic sequencing confirmed the viral classification within the genus Circovirus, resulting in the nomenclature of turbot circovirus (TurCV). The current research endeavors to shed light on the pathogenesis of this pathogen, offering insights into the infection mechanisms of TurCV in this novel piscine host, thereby contributing to the broader understanding of its impact on turbot health and aquaculture.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Boyin Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| |
Collapse
|
2
|
Li Z, Sun Y, Tan R, Gao Y. Identification, characterization and complete genome analysis of a Vibrio anguillarum isolated from Sebastes schlegelii. Microb Pathog 2024; 190:106611. [PMID: 38467165 DOI: 10.1016/j.micpath.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.
Collapse
Affiliation(s)
- Zeyu Li
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yungui Sun
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruiming Tan
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Lages MA, do Vale A, Lemos ML, Balado M. Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of irp-HPI high-pathogenicity island in Vibrio anguillarum. mSphere 2024; 9:e0059623. [PMID: 38078732 PMCID: PMC10826351 DOI: 10.1128/msphere.00596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024] Open
Abstract
The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Bekaert M, Goffin N, McMillan S, Desbois AP. Essential Genes of Vibrio anguillarum and Other Vibrio spp. Guide the Development of New Drugs and Vaccines. Front Microbiol 2021; 12:755801. [PMID: 34745063 PMCID: PMC8564382 DOI: 10.3389/fmicb.2021.755801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Essential genes in bacterial pathogens are potential drug targets and vaccine candidates because disrupting their function is lethal. The development of new antibiotics, in addition to effective prevention measures such as vaccination, contributes to addressing the global problem of bacterial antibiotic resistance. The aim of this present study was to determine the essential genes of Vibrio anguillarum, a bacterial pathogen of aquatic animals, as a means to identify putative targets for novel drugs and to assist the prioritisation of potential vaccine candidates. Essential genes were characterised by a Tn-seq approach using the TnSC189 mariner transposon to construct a library of 52,662 insertion mutants. In total, 329 essential genes were identified, with 34.7% found within the core genome of this species; each of these genes represents a strong potential drug target. Seven essential gene products were predicted to reside in the cell membrane or be released extracellularly, thus serving as putative vaccine candidates. Comparison to essential gene data from five other studies of Vibrio species revealed 13 proteins to be conserved across the studies, while 25 genes were specific to V. anguillarum and not found to be essential in the other Vibrio spp. This study provides new information on the essential genes of Vibrio species and the methodology may be applied to other pathogens to guide the development of new drugs and vaccines, which will assist efforts to counter antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
5
|
Acosta F, Montero D, Izquierdo M, Galindo-Villegas J. High-level biocidal products effectively eradicate pathogenic γ-proteobacteria biofilms from aquaculture facilities. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 532:736004. [PMID: 39175494 PMCID: PMC11338163 DOI: 10.1016/j.aquaculture.2020.736004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 08/24/2024]
Abstract
The use of effective biocides as disinfectants is essential in aquaculture facilities. However, while most biocides act effectively on free-living planktonic pathogens, they are seldom useful against biofilms. In this study, we evaluate the biocidal efficacy and antimicrobial specific contact time of three disinfectants, Virkon™Aquatic (VirA), peracetic acid (PerA) and hydrogen peroxide (HydP), on Vibrio anguillarum, V. harveyi, V. alginolyticus, and Photobacterium damselae subspecies piscicida against their both life phases. By using the minimum inhibitory, bactericidal, and eradication concentrations of disinfectants acting on the free-living planktonic state (MIC; MBC) and biofilms (MBIC; MBEC), we determined the in vitro susceptibility of each bacterial strain against three different individual concentrations of VirA, PerA, and HydP added at 1, 5, and 10 min intervals. PerA and VirA had the highest bactericidal efficacies against the free-living planktonic state and biofilm of all bacteria. Kinetically, PerA gave a positive result more quickly in both cases regardless of the strain in question, while the weakest HydP required longer than 10 min to act effectively. Moreover, we conducted a short in vivo safety trial by pouring the suggested MIC of each disinfectant into tanks containing juvenile Gilthead seabream (Sparus aurata). A significant mortality after 24 h was observed pointing to the potential risk a mishap of these chemicals might cause to fish. Nevertheless, collectively, our results support the inclusion of biocides within biosecurity protocols in aquaculture facilities and highlight PerA as the most effective disinfectant for fighting against biofilms produced by V. anguillarum, V. harveyi, V. alginolyticus or P. damselae subsp. piscicida.
Collapse
Affiliation(s)
- Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | | |
Collapse
|
6
|
Froelich BA, Daines DA. In hot water: effects of climate change on Vibrio-human interactions. Environ Microbiol 2020; 22:4101-4111. [PMID: 32114705 DOI: 10.1111/1462-2920.14967] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Sea level rise and the anthropogenic warming of the world's oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V. parahaemolyticus. This minireview examines the current literature for updates on the climatic changes and practices that impact the location and duration of the presence of Vibrio spp., as well as the infection routes, trends and virulence factors of these highly successful pathogens. Finally, an overview of current treatments and methods for the mitigation of both oral and cutaneous exposures are presented.
Collapse
Affiliation(s)
- Brett A Froelich
- Department of Biology, George Mason University, 10900 University Boulevard, Manassas, VA, 20110
| | - Dayle A Daines
- College of Sciences, Office of the Dean, Old Dominion University, Norfolk, VA, 23529
| |
Collapse
|
7
|
Lages MA, Balado M, Lemos ML. The Expression of Virulence Factors in Vibrio anguillarum Is Dually Regulated by Iron Levels and Temperature. Front Microbiol 2019; 10:2335. [PMID: 31681201 PMCID: PMC6803810 DOI: 10.3389/fmicb.2019.02335] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023] Open
Abstract
Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|